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Electrical Circuit | (EEE 0713-1101)
3 Credit Course

—

Class: 17 weeks (2 classes per week)
=34 Hours

Preparation Leave (PL): 02 weeks

Exam: 04 weeks

Results: 02 weeks

Total: 25 Weeks

Attendance:

Students with more than or equal to 70% attendance in this
course will be eligible to sit for the Semester End Examination

(SEE). SEE is mandatory for all students.
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SYNOPSIS / RATIONALE

D

Electrical Circuit 1 forms the foundation of electrical engineering
education, introducing students to the principles and analysis
techniques of electrical circuits. This course is essential for
understanding the behavior and properties of various electrical
components and their interactions within circuits. By mastering the
fundamentals of circuit analysis, students develop problem-solving
skills crucial for tackling more complex electrical engineering
topics. Understanding this course is essential for students pursuing
careers in electrical engineering, providing them with the necessary
knowledge to design, analyze, and troubleshoot electrical circuits in
diverse applications.



Course Objective

Understand basic electrical circuit concepts and laws.
Analyze simple resistive circuits using Ohm's Law and
Kirchhoff's Laws.

Apply nodal and mesh analysis techniques to analyze
complex circuits.

Learn the use of circuit simulation software for
analysis and design.

Develop skills in troubleshooting and debugging
electrical circuits.



Course Learning Outcome (CLO)

Explain the basic operation of different circuit
parameters and their characteristics to solve
complex engineering problems.

Compare different laws and circuit analysis.

Understand the impact and advantage of
electrical devices on societal and environmental

aspects.
Apply the knowledge of designing circuits and

to solve real life engineering problems such as
blood vessels.
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EEE-0713-1101 Lectures:2 hours/week
Electrical Circuit I Credits: 3

Circuit Variables and Elements: Voltage, current, power,
energy, independent and dependent sources, resistance.

Basic Laws: Ohm's law, Kirchhoff’s current and voltage laws,
simple resistive circuits, series and parallel circuits, voltage
and current division, Wye-Delta transformation, linearity
property.

Techniques of Circuit Analysis: Nodal and mesh analysis
including super node and super mesh.

Network Theorems: Source transformation, superposition
theorem, Thevenin's theorem, Norton's theorem, maximum
power transfer theorem, reciprocity theorem, and Millman’s
theorem.




Outline of Course

—
Current, Voltage, Power & Energy

1
2 Ohm’s Law & Kirchhoff's Law

3 Series, Parallel, Y,A, CDR, VDR

4 Nodal Analysis

5 Nodal Analysis with Source

6 Mesh Analysis

7/ Source Transformation

8 Thevenin’'s Theorem

9 Thevenin’s & Norton’s Theorem with Dependent Source

10 Maximum Power Transfer Theorem

11 Superposition theorem

12 Inductors & Capacitors

13 Phasor Noor Md Shahriar 8



Course Schedule

Course plan specifying content, CLOs, teaching learning and assessment strategy mapped with CLOs

Fundamental types of Written Exam,
1 energy, electrical energy Lecture, Discussion Class CLO-0
discussion Participation

DSl g Lecture, Visual Aids, Quiz, Written

2 transmission, AC vs DC : : CLO-1
: Group Discussion Exam
comparison
Electrical quantities, DC
voltage, resistance, Lecture, Practical Problem
3 : : : CLO-1
power, measuring unit, Examples Solving
Ohm’s law, problems
Kirchhoft’s Current
4 Law (KCL), Kirchhoff’s Lecture, Group Quiz, Written CLO
Voltage Law (KVL) Problem Solving Exam
Quiz-1 Quiz-01
Mid Term Exam

Noor Md Shahriar




Course Schedule

Course plan specifying content, CLOs, teaching learning and assessment strategy mapped with CLOs

Series circuits, voltage, . Assignment,
& Lecture, Case Studies, &
5 current, power, energy , Prohlem C1.0-3
=7 Problem Practice :
problems Solving
Parallel circuits, voltage

Lecture, Hands-on  Quiz, Problem-

6 d1V1d6r rule, problem- ASG . Sy s CLO-3
solving
Current divider rule, Assionm Lecture. Grou Assignment,
7 parallel circuits with g o P Oral CLO-4
: ent Activities :
multiple branches Presentation
Wye-Delta : Lecture, Board Work, Prob.lem
8 transformation and : Solving, CLO-3
. . Practical Problems
simplification Classwork
: Lecture, Visual :
9 Nodal analysis, theory Presentation, ertt.en Exam, CLO3
and problems Assignment
Examples
Mesh analvsis. theor Lecture, Practice Written Exam,
10 SIS, Y Problems, Case Problem CLO-4
and problems : :
Studies Solving

Quiz-2 Quiz-02



Mid Term Exam

Theory and problem
solution on
Thevenin’s Theorem
Theory and problem
solution on Norton’s
Theorem

Theory and problem
solution on
Superposition
Theorem

Theory and problem
solution on
Maximum Power
Transfer Theorem

Assignm
ent-2

Course Schedule

Lecture, Whiteboard
Examples, Problem-
Solving

Quiz, Written
Exam

Lecture, Group Problem Assignment,
Solving Problem Solving

Quiz, Problem
Solving

Lecture, Case Studies,
Group Activities

Lecture, Practical
Examples, Problem
Solving

Problem-Solving
Exam




Quiz-3

Inductors and their
series-parallel
combinations
Capacitors and their
series-parallel
combinations

Phasor Analysis

Mid Term Exam

Course Schedule

Lecture, Visual Problem Solving,
: : CLO-1
Demonstration Assignment
Lecture, Visual Aids, Written Exam, CLO-1
Problem-Solving Class Participation
Lecture, Phasor Diagram Quiz, Written
Demonstration Exam

CLO-2




Reference books

1. “Fundamentals of Electric Circuits" by Charles K. Alexander, Matthew
N.O. Sadiku.

2. "Electric Circuits" by James W. Nilsson, Susan A. Riedel.

3. "Engineering Circuit Analysis" by William H. Hayt, Jack E. Kemmerly,
Steven M. Durbin.

4. "Introductory Circuit Analysis" by Robert L. Boylestad.

5. "Circuit Analysis: Theory and Practice” by Allan H. Robbins, Wilhelm C.
Miller.

6. "The Analysis and Design of Linear Circuits"” by Roland E. Thomas,

Albert J. Rosa, Gregory J. Toussaint.
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A Sample Question

Sl.
no.

1.(a)

Question Figure Marks | CO

While learning to solve an electrical circuit one of the most important laws is
Kirchhoff's current law. State that law.

The current entering the positive terminal of a device is i(t) = 6e-2t mA and the
voltage across the device is v(t) = 10dydtV.

(b) | (i) Find the charge delivered to the device betweent=0andt=2s.

(ii) Calculate the power absorbed. e

(iii) Determine the energy absorbed in 3 s.

2 C1

Z120

Let’'s assume you found a bunch of tangled wires which
is illustrated in the figure below. When you measured the
resistance of two untangled ends with a multimeter, you
found R,,. Calculate the value of R,

¢ Low
4

The circuit in the following figure is to control the speed . ,»

of a motor such that the motor draws currents 5 A, 3 A, Medium
and 1 A when the switch is at high, medium, and low High &
positions, respectively. The motor can be modeled as a A
load resistance of 2 Q). Determine the series dropping

resistances R1, R2, and R3.




Bloom Taxonomy Cognitive
Domain Action Verbs

Remembering | Choose ¢ Define * Find « How ¢« Label ¢ List « Match « Name « Omit « Recall « Relate °
(C1) Select » Show * Spell « Tell - What « When « Where « Which « Who « Why

Understanding | Classify « Compare  Contrast « Demonstrate ¢« Explain < Extend ¢ lllustrate « Infer o
(C2) Interpret « Outline * Relate * Rephrase * Show « Summarize * Translate

Applying (C3) Apply ¢ Build « Choose ¢ Construct « Develop ¢ Experiment with « Identify « Interview -
Make use of « Model « Organize ¢ Plan « Select ¢ Solve « Utilize

Analyze « Assume * Categorize ¢ Classify « Compare « Conclusion ¢ Contrast ¢ Discover ¢
Analyzing (C4) | Dissect + Distinguish * Divide * Examine * Function * Inference ¢ Inspect * List + Motive *
Relationships « Simplify « Survey « Take part in « Test for « Theme

Agree ¢ Appraise ¢ Assess ¢ Award * Choose « Compare * Conclude ¢ Criteria ¢ Criticize °
Evaluating (C5) Decide * Deduct « Defend ¢ Determine - Disprove « Estimate - Eval.uellte . Explgin .
Importance ° Influence  Interpret « Judge * Justify « Mark « Measure « Opinion ¢ Perceive °
Prioritize * Prove * Rate - Recommend ¢ Rule on * Select « Support * Value

Adapt ¢ Build « Change * Choose * Combine * Compile * Compose ¢ Construct « Create °
Creating (C6) Delete ¢ Design « Develop ¢ Discuss ¢ Elaborate ¢ Estimate « Formulate « Happen -
Imagine ¢ Improve ¢ Invent « Make up * Maximize « Minimize *« Modify ¢ Original * Originate
* Plan ¢ Predict « Propose * Solution * Solve * Suppose ¢ Test * Theory
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What are Current and

Voltage?

-




Overview

In this part, we will cover:
 Definitions of current and voltage

» Hydraulic analogies to current and
voltage

» Reference polarities and actual
polarities

Noor Md Shahriar
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Presenter Notes
Presentation Notes
You can click on the blue text to jump to the subject that you want to learn about now.


Current: Formal Definition

-

« Current is the net flow of charges, per time, past an
arbitrary “plane” in some kind of electrical device.

« We will only be concerned with the flow of positive
charges. A negative charge moving to the right is
conceptually the same as a positive charge moving to
the left.

 Mathematically, current is expressed as...



Presenter Notes
Presentation Notes
Current is the time rate of change of charge.  The implication is that these charges are going past some plane somewhere.  Pay attention to the units.  An ampere is defined as a Coulomb per second.


The Ampere

-
* The unit of current is the [Ampere], which is a
flow of 1 [Coulomb] of charge per [second],
or:

1[A] = 1[Coul/sec]
« Remember that current is defined in terms of
the flow of positive charges.

One [coulomb] of positive charges per [second]
flowing from left to right

- IS equivalent to -

one [coulomb] of negative charges per [second]
ﬂOWing from rlght toNL@rfl\td Shahriar 20



Presenter Notes
Presentation Notes
In circuits, we can think in terms of positive charges, even though most of the time the charge carriers are electrons, which are negatively charged.  We just pretend that we have positive charges flowing the other way.


VVoltage: Formal Definition

 When we move a charge in the prese?
other charges, energy is transferred. Voltage Is
the change in potential energy, per charge, as

we move between two points; it is a potential
difference.

« Mathematically, this is expressed as...

Noor Md Shahriar 21


Presenter Notes
Presentation Notes
Voltage is the rate of change of energy with movement of a charge.  Voltage is the potential to do work.  


What is a [Volt]?

* The unit of voltage is the [Volt]. A [Voltl IS
defined as a [Joule per Coulomb].

 Remember that voltage is defined in terms of

the energy gained or lost by the movement of
positive charges.

One [Joule] of energy is lost from an electric
system when a [Coulomb] of positive charges
moves from one potential to another potential
that is one [Volt] lower.

Noor Md Shahriar 22




Polarities

It is extremely important that we know the
polarity, or the sign, of the voltages
and currents we use. Which way is
the current flowing”? Where is the
potential higher? To keep track of
these things, two concepts are used:

1. Reference polarities, and
2. Actual polarities.

Noor Md Shahriar 23



Reference Polarities

The reference polarity is a directi

chosen for the purposes of &
track. It is like picking North as your
reference direction, and keeping track of
your direction of travel by saying that
you are moving in a direction of 135

degrees. This only tells you where you
are going with respect to north, your

Noor Md Shahria



Actual Polarity

The actual polarity is the direction something is
actually going. We have only two possible
directions for current and voltage.

* If the actual polarity is the same direction as
the reference polarity, we use a positive sign
for the value of that quantity.

* |f the actual polarity is the opposite direction
from the reference polarity, we use a negative
sign for the value of that quantity.

Noor Md Shahriar 25



Polarities for Currents

For current, the reference polarity is given by an arrow.

The actual polarity is indicated by a value that is associated with that
arrow.

In the diagram below, the currents i, and i, are not defined un!ll %He
arrows are shown.

Use lowercase variables for current. Uppercase subscripts are
preferred.

i) i 3[A]  3[A

: a wire

i;=3[A]
i,=-3[A]

These are all different ways to show the same thing, a

current of 3 [Coulombs] per [second] of positive charges
moving from left to right through this wire.

The arrow shows a reference polarity, and the sign of the
number that goes with that arrow shows the actual

polarity. 26




Polarities for Voltages

For voltage, the reference polarity is given by a variable v
with a subscript, and a + sign and a — sign, at or near the
two points involved.

The actual polarity is indicated by the sign of the value of
that variable v, or by the sign of the value that is placed
between the + and - symbols.

In the diagram below, the voltages v, and v, are not defined
until the + and — symbols are shown.

Use lowercase
variables for voltage.
Uppercase subscripts
are preferred.

Device

vi()  va()  S[V] -5[V]

- - -




Defining Voltages

« For voltage, the reference polarity is given by a

variable v with a subscript, and a + sign %
sign, at or near the two points involved.

Device

vi(t)  va(t)  S[V] -5[V]
- -
@ @




Energy

-

- EnergyTs the ability or the capacity to do
work.

* |tis a quantity that can take on many forms,

among them heat, light, sound, motion of

objects with mass.



Presenter Notes
Presentation Notes
Several forms of energy are symbolized by these pictures.  Light and heat are two forms of energy.  Two forms of the generation of electric energy are symbolized by the nuclear power plant, and the hydroelectric power plant.


Joule Definition

.

The unit for energy that we use is the [Jo
abbreviated as [J].

A [Joule] is a [Newton-meter].

In everything that we do in circuit analysis,
energy will be conserved.

One of the key concerns in circuit analysis is this:
Is a device, object, or element absorbing energy

or delivering energy?
= \\

g

Go back to
3@Verview
slide.



Week -2

-

Page- (32-54)
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Power

* Power is the rate of change of the ener
with time. It is the rate at which the e*
absorbed or delivered.

« Again, a key concern is this: |s power being
absorbed or delivered? We will show a way
to answer this question.

« Mathematically, power is defined as:

Noor Md Shahriar 32


Presenter Notes
Presentation Notes
Power is the rate of change of energy with time.  Be careful; the same letter, w, is used for the units of power, and the symbol for energy.  This is one reason I put units inside square brackets.


Watt Definition
| —

« A [Watt] is defined as a [Joule per second].
* We use a capital [W] for this unit.

 Light bulbs are rated in [W]. Thus, a 100[W]
light bulb is one that absorbs 100[Joules]
every [second] that it is turned on.

33



Power from Voltage and Current

-

Power can be found from the voltage and
current, as shown below. Note that if voltage is
given in [V], and current in [A], power will come

out in [W].

Go back to
3@Verview
slide.
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Passive Sign Relationship —
Discussion of the Definition

The two circuits below have reference polarities
which are in the passive sign relationship.

Notice that although they look different, these two
circuits have the same relationship between the
polarities of the voltage and current.

Passive Sign Relationship

Circuit Circuit



Presenter Notes
Presentation Notes
A sign convention is a relationship between reference polarities for voltage and current.


Using Sign Relationships for Power

Direction — The.&d.

We will use the sign relationships to
determine whether power is
absorbed, or power is delivered.

When we use the passive sign
relationship to assign reference
polarities, vi gives the power
absorbed, and —vi gives the power
delivered.

When we use the active sign
relationship to assign reference
polarities, vi gives the power
delivered, and —vi gives the power
absorbed.

Noor Md Shahriar 36


Presenter Notes
Presentation Notes
A sign relationship is a relationship between reference polarities for voltage and current.


Using Sign Relationships for
Power Direction — The Rules

We will use the sign relationships to determine whether
power is absorbed, or power is delivered.

When we use the passive sign relationship to assign
reference polarities, vi gives the power absorbed, and —vi
gives the power delivered.

When we use the active sign relationship to assign
reference polarities, vi gives the power delivered, and —vi

gives the
power Passive Active
absorbed. Relationship Relationship

Power — o — :
absorbed pABS = Vi pABS = -V

Power — ; —_ 71
. = =VI =V
delivgred,, Sh"\l'ia[r) DEL pD EL 37



Presenter Notes
Presentation Notes
A sign relationship is a relationship between reference polarities for voltage and current.


Example of Using the Power
Direction Table — Step 1

We want an expression for the power absorbed by this

Sample Circuit.
Determine which sign relationship has been

Sample
Circuit

1.
used to assign reference polarities for this
Sample Circuit.
Passive Active
Relationship ||| Relationship
Power = v = -yj
absorbed Pass R
Power = -yvj = v
delivered PpeL Poer

Noor Md Shahriar 38



Example of Using the Power
Direction Table — Step 2

B
We want an expression for the power absorbed by this

Sample Circuit.
1. Determine which sign relationship has been used.

2. Next, we find the cell that is of interest to us
here in the table. It is highlighted in below.

Passive Active Sample
Relationship ||| Relationship Circuit
Power p = v
absorbed ABS
Power = -v| = v
delivered P DEL Fl?lpolr;léld Shahriar




Example of Using the Power
Direction Table — Step 3

B
We want an expression for the power absorbed by this

Sample Circuit.
1. Determine which sign relationship has been used.

2. Find the cell that is of interest to us here in the S

table. This cell is highlighted in : Overview

slide.

3. Thus, we write pABS.BY.CIR — 'Vsis .

Passive Active Sample
Relationship ||| Relationship Circuit
Power p = v
absorbed ABS
Power = -v| = v
delivered P DEL Fl?lpolr;léld Shahriar




Example of Using the Power
Direction Table — Note on Notation

We want an expression for the power absorbed by *
Sample Circuit.

1. Determine which sign relationship has been used.

2. Find the cell that is of interest to us here in the I
table. This cell is highlighted In : Overview

slide.

3. Thus, we write Pagspy cir = -Vsis_

Sample
Circuit




Power Directions Assumption #1

« S0, a key assumption is that when we say power delivered, we
mean that there is power taken from someplace else, converte
and delivered to the electrical system. This is the how té
approach gives us direction.

« For example, in a battery, this power comes from chemical power

in the battery, and is converted to electrical power.

« Remember that energy is conserved, and therefore power will be
conserved as well.

Electrical System

made up of various parts
and components

Component
1n circuit
which

delivers Electrical power

Nonelectrical power | positive
that will be converted [ power
to electrical power

that 1s delivered
to the system




Power Directions Assumption #2

« S0, a key assumption is that when we say power absorbed, we
mean that there is power from the electrical system thaﬁ
converted to nonelectrical power. This is the how this approa
gives us direction.

« For example, in a lightbulb, the electrical power is converted to

light and heat (nonelectrical power).

« Remember that energy is conserved, and therefore power will be
conserved as well.

Electrical System

made up of various parts
and components

Component
in circuit
which

Electrical power | absorbs

positive | INonelectrical power
power that was converted
from electrical power

that 1s absorbed
out of the system




Power Directions Terminology —

Synonyms

Electrical System

made up of various parts
and components

Component
in circuit
which
: absorbs .
Elect.ncal power positive | INOnelectrical power
that is absorbed power that was converted
out of the system | from electrical power

made up of various parts

Electrical System

and components

Component
in circuit
which

Nonelectrical power | delivers

that wall be converted | positive

Electrical power
that is delivered

to electrical power polwer

to the system




Another Hydraulic Analogy

* Another useful hydraulic analogy that can be
used to help us understand this is presented™
by A. Bruce Carlson in his textbook, Circuits,
published by Brooks/Cole. The diagram,

Figure 1.9, from page 11 of that textbook, is
duplicated here.




Another Hydraulic Analogy — Details

* In this analogy, the electrical circuit is shown at the
left, and the hydraulic analog on the right.

* As Carlson puts it, “The pump (source) forces water
flow (current) through pipes (wires) to drive the
turbine (load). The water pressure (potential) is
higher at the inlet port of the turbine than at the

outlet.”




Another Point on Terminology

« We always need to be careful of our context.
When we say things like *
", we implicitly mean *

the
Source delivers power




Another Point on Terminology

« At the same time, it is also acceptable to write

expressions such as Pags gy source = ~0000[W]. Thisusss
the same thing as saying that the power delivered is
S5000[W].

* However, unless the context is clear, it is ambiguous to

just write p = 5000[W]. Your answer must be clear,
because the direction is important!

the
Source delivers power




Why bother with Sign Relationships?

I
« Students who are new to circuits often question

whether sign relationships are intended just to make
something easy seem complicated. It is not so; using
sign conventions helps.

* The key is that often the direction that power is
moving is not known until later. We want to be able
to write expressions now that will be valid no matter
what the actual polarities turn out to be.

* To do this, we use sign relationships , and the actual
directions come out later when
we plug values in.

Go back to
4@V6rview
slide.
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Presenter Notes
Presentation Notes
Sign conventions will help.  Try them!


Sample Problem

The components of a cell phone are shown in Figure 1.
Assume that the charge carriers are electrons.

Find the power absorbed by the battery at t = 3[ms].

Find the energy delivered by the charger during the
third [millisecond], counting [milliseconds] starting at ¢
= 0.

Determine whether the electrons flowing through the
charger at t = 3[ms] are gaining or losing energy.
Explain your answer.

/
1.35 —

1.15

VCHAR( f) [V]

Figure 2

-13

I -]

Charger | Vcmar | Battery Speaker |  vgcr Screen

i: t, [ms]

l . T . “

Figure 1 - ==

10

Figure 4

ic, [MA]
2 4

0

4> ¢, [ms]
10

Figure 3




The components of a cell phone are shown in Figure 1.
Assume that the charge carriers are electrons.

VCHAR(U: [V]
A
1.35 =

Find the power absorbed by the battery at t = 3[ms].

1.15 =

0
o |
0 > 7, [ms]
10
Figure 3
-13
° °
+ - iB, [mA] :
i ) A i
l llSPR T o= !
o e I IR 5
Charger | vcuar | Battery Speaker | vgcx Screen 2 bo £, [ms]
0 4
10

; Figure 4
1,- A SCR

11 ——

¢+

Figure 1



The components of a cell phone are shown in Figure 1.

Assume that the charge carriers are electrons.
verar(t), [V]

Find the energy delivered by the charger during the third R
[millisecond], counting [milliseconds] starting at t = 0. Loy

1.15 =

0
lc, |
0 > 7, [ms]
10
Figure 3
-13
° ®
+ - iB, [mA] !
i C . A ‘
l llSPR 7 —p——d ;
[ 2 S R N P
Charger | Vcuar | Battery Speaker |  vgcr Screen 2 fo ¢ [ms]
L 4 10
. Figure 4
ig Iscr
- +
° ———— —_ °
Figure 1 il =




The components of a cell phone are shown in Figure 1.
Assume that the charge carriers are electrons.

Determine whether the electrons flowing through the

charger at t = 3[ms] are gaining or losing energy. Explain

your answer.

Verar(t), [V

'\
1.35 =

1.15 =

]

> 7, [ms]
10

Figure 3

-13

Screen

TiSCR

® °
. + -
i :
l g llSPR
Charger | Vcuar | Battery Speaker |  vgcr
- +
® ———— — °

Figure 1

11 ——

Figure 4
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-
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Circuit Elements

-




Circuit Elements

* In circuits, we think about basic circuit
elements that are the "building blocks”
of our circuits. This is similar to what
we do in Chemistry with chemical
elements like oxygen or nitrogen.

* A circuit element cannot be broken
down or subdivided into other circuit
elements.

A circuit element can be defined in
terms of the behavior of the voltage

and current at its terminals.
Noor Md Shabhriar 56




The 5 Basic Circuit Elements

There are 5 basic circuit elements:
1. Voltage sources

Current sources

Resistors

Inductors

Capacitors

U
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Presenter Notes
Presentation Notes
We will introduce capacitors and inductors in a later lecture set.  We can cover a great deal of important concepts with just three elements.


Voltage Sources

» A voltage source is a two-terminal
circuit element that maintains a
voltage across its terminals.

« The value of the voltage is the defining
characteristic of a voltage source.

* Any value of the current can go
through the voltage source, in any
direction. The current can also be
zero. The voltage source does not
“care about” current. It “cares” only
abOUt VOItage- Noor Md Shahriar



Presenter Notes
Presentation Notes
A wall socket can sometimes be thought of as a voltage source.


Voltage Sources —
Ideal and Practical
o

* A voltage source maintains that voltage
across its terminals no matter what you
connect to those terminals.

« We often think of a battery as being a
voltage source. For many situations, this is
fine. Other times it is not a good model. A
real battery will have different voltages
across its terminals in some cases, such as
when it is supplying a large amount of
current. As we have said, a voltage source
should not change its voltage as the current
changes.

Noor Md Shahriar



Voltage Sources —
Ideal and Practical

» A voltage source maintains that voltage across its
terminals no matter what you connect to those
terminals.

« We often think of a battery as being a voltage source.
For many situations, this is fine. Other times it is not a
good model. A real battery will have different
voltages across its terminals in some cases, such as
when it is supplying a large amount of current. As we
have said, a voltage source should not change its
voltage as the current changes.

«  We sometimes use the term ideal voltage source for
our circuit elements, and the term practical voltage
source for things like batteries. We will find that a
more accurate model for a battery is an ideal voltage
source in series with a resistorndMaresesnthat later.




Voltage Sources — 2 kinds

There are 2 kinds of voltage sources:
1. Independent voltage sources

2. Dependent voltage sources, of which
there are 2 forms:
I. Voltage-dependent voltage sources
ii. Current-dependent voltage sources

Noor Md Shahriar 61



Voltage Sources — Schematic
Symbol for Independent Sources

The schematic
symbol that we use Independent
for independent Voltage
voltage sources is : Source
shown here.

This is intended to indicate that the schematic
symbol can be labeled either with a variable,

like v;, or a value, with some number and
units. An example might be 1.5[V]. It could
also be labeled with both.



VVoltage Sources — Schematic
Symbols for Dependent Voltage Sources

The schematic symbols that

we use for dependent Voltage-
dependent
voltage sources are voltage

shown here, of which source
there are 2 forms:

I.  Voltage-dependent
voltage sources

Current-

ii. Current-dependent dependent

voltage
source

voltage sources

Noor Md Shahriar



Notes on Schematic
Symbols for Dependent Voltage Sources

The symbol u is the coefficient of the
voltage v,. Itis dimensionless. For

Voltage-
dependent
voltage

example, it might be 4.3 v,. The vy is a
voltage somewhere in the circuit.

The schematic symbols that we use for SR
dependent voltage sources are
shown here, of which there are 2

forms:
I.  Voltage-dependent voltage
sources Current.
ii. Current-dependent voltage dependent
sources

voltage
The symbol p is the coefficient of the current iy. source

It has dimensions of [voltage/current]. For

example, it might be 4.3[V/A] iy. The iy is a
current somewhere in the circuit.




Current Sources

—

A current source is a two-terminal circuit element that
maintains a current through its terminals.

The value of the current is the defining characteristic of the
current source.

Any voltage can be across the
current source, in either polarity.
It can also be zero. The current
source does not “care about”
voltage. It “cares” only about
current.
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Presenter Notes
Presentation Notes
A wall socket can also be thought of as a current source, but in most situations is not as good a model.  We will learn why later.  A more appropriate current source example is an electric fence.  


Current Sources - Ideal

* A current source maintains a current through
its terminals no matter what you connect to
those terminals.

* \While there will be
devices that reasonably
model current sources,
these devices are not
as familiar as batteries.




Current Sources - Ideal

* A current source maintains a current through its terM's no

matter what you connect to those terminals.

* While there will be devices that reasonably model current
sources, these devices are not as familiar as batteries.

 We sometimes use the term
ideal current source for our
circuit elements, and the term
practical current source for
actual devices. We will find
that a good model for these
devices is an ideal current
source in parallel with a
resistor. More on that later.
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Current Sources — 2 kinds

There are 2 kinds of current sources:
1. Independent current sources

2. Dependent current sources, of which
there are 2 forms:
I. Voltage-dependent current sources
ii. Current-dependent current sources
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Current Sources — Schematic
Symbol for Independent Sources

The schematic symbol
that we use for

independent _ Independent
current sources Is ' Current
shown here. : Source

This is intended to indicate that the schematic symbol can
be labeled either with a variable, like i, or a value, with

some number and units. An example might be 3.3[mA].
It could also be labeled with both




Current Sources — Schematic
Symbols for Dependent Current Sources

The schematic symbols that

we use for dependent | Violeyze-
dependent
current sources are current

shown here, of which source
there are 2 forms: /
I. Voltage-dependent
current sources

ii. Current-dependent .
- .
current sources current

SOurce

Current-
dependent
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Notes on Schematic
Symbols for Dependent Current Sources

The symbol g is the coefficient of
the voltage vy. It has dimensions

of [current/voltage]. For example,
it might be 16[A/V] vy. The vy is a
voltage somewhere in the circuit.

Voltage-
dependent

current

The schematic symbols that we use for source
dependent current sources are
shown here, of which there are 2

forms:
I.  Voltage-dependent current
sources
ii. Current-dependent current Current-
sources ] dependent

current
source

The symbol B is the coefficient of the
current /. It is dimensionless. For

example, it might be 53.7 iy. The i, is a
current somewhere in the circuit.




Resistors

* A resistor is a two terminal
circuit element that has a
constant ratio of the voltage
across its terminals to the
current through its terminals.

* The value of the ratio of 1
voltage to current is the oI R
.S C light bulb can be
defining characteristic of the  [ESSISNININN
resistor. resistor.

Noor Md Shahriar
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Resistors — Definition and Units

A resistor obeys the expression

where R iIs the resistance.

If something obeys this
expression, we can think of it, and
model it, as a resistor.

This expression is called Ohm’s
Law. The unit ([Ohm] or [Q]) is
named for Ohm, and is equal to a
[Volt/Ampere].

IMPORTANT: use Ohm’s Law
only on resistors. It does not hold
for sources. Noor Md Shahriar




Schematic Symbol for Resistors

The schematic symbol that we use fo?.
resistors is shown here.

This is intended to indicate that the schematic symbol
can be labeled either with a variable, like R,, or a

value, with some number, and units. An example
might be 33[Q]. It could also be labeled with both.

Noor Md Shahriar 74



Resistor Polarities

Previously, we have
emphasized the important of
reference polarities of current
sources and voltages sources.
There is no corresponding
polarity to a resistor. You can
flip it end-for-end, and it will
behave the same way.

However, even in a resistor,
direction matters in one sense;
we need to have defined the
voltage and current in the
passive sign relationship to
use the Ohm’s Law equation

the way we have it listed here.
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Getting the Sign in Ohm’s Law from
the Sign Relationship
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The Sign in Ohm’s Law Determines
the Sign Relationship
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Why do we have to worry
about the sign in Everything?

This is one of the central themes in circuit analysis. The polarity,
and the sign that goes with that polarity, matters. The key is to
find a way to get the sign correct every time.

This is why we need to define reference polarities for every
voltage and current.

This is why we need to take care about what relationship we
have used to assign reference polarities (passive sign
relationship and active sign relationship).
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Kirchhoff’s Laws

-




Some Fundamental
Assumptions — Wires

* Although you may not have stated it, or ‘&% mv A
thought about it, when you have drawn L b e T
circuit schematics, you have connected . & SRS aS Earaes
components or devices with wires, and S0 "
shown this with lines. .

This picture shows wires

* Wires can be modeled pretty well as :
_ ] _ _ used to connect electrical
resistors. However, their resistance is B CaL iR s e,

usually negligibly small. way of connecting
i i . ] components is called
* We will think of wires as connections wirewrapping, since the ends

with zero resistance. Note that thisis  ERIEAZERIENEgE
equivalent to having a zero-valued around posts.

VOItage source. Noor Md Shahriar 81



Some Fundamental
Assumptions — Nodes

* A node is defined as a place
where two or more
components are connected.

* The key thing to remember is
that we connect components
with wires. It doesn’'t matter
how many wires are being
used; it only matters how
many components are
connected together.

Noor Md Shahriar 82



How Many Nodes?

* To test our
understanding of
nodes, let’s look at
the example circuit
schematic given
here.

 How many nodes are
there in this circuit?

Noor s


Presenter Notes
Presentation Notes
Think about your answer before going on to the next slide.


How Many Nodes — Correct Answer

* |n this schematic, there
are three nodes. These
nodes are shown In
dark blue here.

« Some students count
more than three nodes
In a circuit like this.
When they do, it is
usually because they
have considered two
points connected by a
wire to be two nodes.
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Presenter Notes
Presentation Notes
The nodes are the darker blue shapes.  The shape is unimportant to us; we can draw the circuit in many ways.  The key here, for example, is that a voltage source, a current source, and a resistor called RF are connected to the bottom node.


How Many Nodes — Wrong Answer

Wire connecting two
nodes means that

these are really a
single node.

In the example circuit
schematic given here, the
two red nodes are really
the same node. There
are not four nodes.

« Remember, two nodes
connected by a wire were
really only one node in
the first place.


Presenter Notes
Presentation Notes
Remember, two nodes connected by a wire were not really two nodes at all.  It is all one node.


Some Fundamental
Assumptions — Closed Loops

A closed loop can be
defined in this way: Start at
any node and go in any
direction and end up where
you start. This is a closed
loop.

* Note that this loop does not
have to follow components.
It can jJump across open
space. Most of the time we
will follow components, but
we will also have situations
where we need to jump
between nodes that have no
connections.




How Many Closed Loops

* To test our
understanding of
closed loops, let's
look at the
example circuit
schematic given

nere.

 How many closed
oops are there in
this circuit?



Presenter Notes
Presentation Notes
Think about your answer before going on to the next slide.


How Many Closed Loops —
An Answer

* There are several closed
loops that are possible here.
We will show a few of them,
and allow you to find the
others.

« The total number of closed
loops that follow
components and defined
voltages in this circuit is 13.
The number of closed loops
as we defined that term, is
infinity.

* Finding the number will not
turn out to be important.
What is important is to
recognize closed loops when
you see them.




* Here is a loop we will

Closed Loops — Loop #1

call Loop #1. The
path is shown in




* Here is Loop #2.

Closed Loops — Loop #2

The path is shown in



Closed Loops — Loop #3

Re

* Here is Loop #3.
The path is shown in

* Note that this path is
a closed loop that
jumps across the
voltage labeled vy.
This is still a closed
loop.




Closed Loops — Loop #H4

 Hereis Loop #4. The
path is shown in

* Note that this path is a
closed loop that jumps
across the voltage
labeled vy. This is still
a closed loop. The
loop also crossed the
current source.
Remember that a
current source can
have a voltage across
it.




A Not-Closed Loop

* The path is shown in ’
here is not
closed.

* Note that this path
does not end where
It started.




Some Fundamental
Assumptions -Closed Surfaces

* A closed surface can be
defined in this way: Start
drawing a line at any place,
move in any direction and
end up where you start.
This boundary thus drawn
will be called a closed
surface.

 We will note that the nodes
we defined earlier are
closed surfaces. All nodes
are closed surfaces, but not
all closed surfaces are
nodes.
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Other Closed Surfaces

A closed surface can be
defined in this way: Start
drawing a line at any place,
move in any direction and
end up where you start.
This boundary thus drawn
will be called a closed
surface.

The dark blue shape in the
diagram at the right is a
closed surface, but it is not
a node. Closed surfaces
can enclose components,
devices, or elements.

\ -
-
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Kirchhoff’'s Current Law (KCL)

* With these definitions, we are
prepared to state Kirchhoff's
Current Law:

The algebraic (or
signed) summation of
currents through any
closed surface must
equal zero.
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Kirchhoff’'s Current Law
(KCL) — Some notes.

The algebraic (or signed) .

summation of currents
through any closed surface
must equal zero.

This law essentially means that charge does not build up at a
connection point, and that charge is conserved.

This law is often stated as applying to nodes. It applies to any closed
surface. For any closed surface, the charge that enters must leave

somewhere else. A node is just a small closed surface. A node is the
closed surface that we use most often. But, we can use any closed

surface, and sometimes it is really necessary to use closed surfaces that
are not nodes.




Current Polarities

Again, the issue of the
sign, or polarity, or direction,
of the current arises. When
we write a Kirchhoff Current
Law equation, we attach a
sign to each reference
current polarity, depending NN\TZ= &
on whether the reference NN
current is entering or leaving
the closed surface. This can
be done in different ways.
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Kirchhoff’s Current Law (KCL)
— a Systematic Approach

The algebraic (or signed) summation '

currents through any closed surface must
equal zero.

For most students, it is a good idea to choose one way to write KCL
equations, and just do it that way every time. The idea is this; if you
always do it the same way, you are less likely to get confused about
which way you were doing it in a certain equation.

For this set of material, we will always assign a positive sign to a
term that refers to a reference current that leaves a closed surface,
and a negative sign to a term that refers to a reference current that

enters a closed surface.




Kirchhoff’s Current Law (KCL)
— an Example

* For this set of material, we will
always assign a positive sign
to a term that refers to a
current that leaves a closed
surface, and a negative sign
to a term that refers to a
current that enters a closed
surface.

* In this example, we have
already assigned reference
polarities for all of the currents
for the nodes indicated in
darker blue.

» For this circuit, and using my
rule, we have the following
equation:

Yy .
[, +i,—i,+i.—i,=0


Presenter Notes
Presentation Notes
The node that we are using here is highlighted in darker blue.


Kirchhoff’'s Current Law (KCL)
— Example Done Another Way

« Some prefer to write this
same equation in a different
way; they say that the current
entering the closed surface
must equal the current leaving
the closed surface. Thus,
they write :

DA A
« Compare this to the

equation that we wrote in the
last slide:

 These are the same

equation. Use either method. NS




 Now, we are prepared to state

Kirchhoff's Voltage Law. (KVL)

Kirchhoff's Voltage Law:

The algebraic (or
sighed) summation
of voltages around
any closed loop
must equal zero.
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Kirchhoff’s Voltage Law
(KVL) — Some notes.

-

The algebraic (or signed)
summation of voltages
around any closed loop
must equal zero.

This law essentially means that energy is conserved. If we move
around, wherever we move, if we end up in the place we started, we
cannot have changed the potential at that point.

This applies to all closed loops. While we usually write equations for
closed loops that follow components, we do not need to. The only
thing that we need to do is end up where we started.
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Kirchhoff’s Voltage Law
(KVL) — a Systematic Approach

The algebraic (or signed) summation ,

voltages around a closed loop must equal
zero.

For most students, it is a good idea to choose one way to write KVL

equations, and just do it that way every time. The idea is this: If you
always do it the same way, you are less likely to get confused about
which way you were doing it in a certain equation.

(At least we will do this for planar circuits. For nonplanar circuits,
clockwise does not mean anything. If this ig confusing, ignore it for now.)

For this set of material, we will always go around loops clockwise. We will

assign a positive sign to a term that refers to a reference voltage drop,
and a negative sign to a term that refers to a reference voltage rise.




Kirchhoff’s Voltage Law
(KVL) — an Example

C

* For this set of material, we will
always go around loops
clockwise. We will assign a
positive sign to a term that
refers to a voltage drop, and a
negative sign to a term that
refers to a voltage rise.

* In this example, we have
already assigned reference
polarities for all of the voltages
for the loop indicated in

« For this circuit, and using our
rule, starting at the bottom, we
have the following equation:

—Vv,+v, —v,+v, =0. .




Kirchhoff’s Voltage
Law (KVL) — Notes

For this set of material, we wiill

As we go up through the
voltage source, we enter the
negative sign first. Thus, v,
has a negative sign in the
equation.

always go around loops
clockwise. We will assign a
positive sign to a term that
refers to a voltage drop, and a
negative sign to a term that
refers to a voltage rise.

Some students like to use the
following handy mnemonic
device: Use the sign of the
voltage that is on the side of
the voltage that you enter.
This amounts to the same
thing.




Kirchhoff's Voltage Law
(KVL) — Example Done Another Way

« Some textbooks, and some
students, prefer to write this
same equation in a different
way; they say that the voltage
drops must equal the voltage
rises. Thus, they write the
following equation:

Vy TV, =V, +V,.

Compare this to the equation that
we wrote in the last slide:

—Vv,+v, —v,+v, =0.

These are the same equation.
Use either method.




Example #1

 Let us do an
example to test
out our new found
SIS

* |n the circuit
shown here, find
the voltage v, and
the current i,.
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Example #1 — Step 1

* The first step In
solving is to define
variables we
need.

* |n the circuit
shown here, we
will define +, and
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Example #1 — Step 2

* The second step In
solving is to write
some equations.
Let’'s start with KVL.

=3 V]+v, +v, =0.
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Example #1 — Step 3

* Now let's write
Ohm’s Law for the
resistors.

Notice that there is a sign in
Ohm’s Law.



Example #1 — Step 4

* Next, let’'s write KCL
for the node marked
In violet.

Notice that we can write KCL
for a node, or any other closed
surface.



Example #1 — Step 5

* We are ready to
solve.

—3[V]—i, 20[Q]—i,100[Q] =0, or

.
' = or0] 25[mA].

We have substituted into our
KVL equation from other
equations.



Example #1 — Step 6

* Next, for the other
requested solution.

vy = —(~25[mA])100[Q] = 2.5[V].

We have substituted into
Ohm’s Law, using our solution
for i,.



Example Problem #2

How many nodes are there in this circuit?

17[Q] A A 2 38[Q]
22[Q)]
23[Q]
36[Q]
34[Q)]
®E
31[Q] 26[Q] 30[Q] -
18[Q]
25[Q] 33[Q] 28[Q] _
/—0
C D



Example Problem #3
* Let'sdo

another \
example. 3[mA]<‘> “’<> 301> |
Find the '

voltage v,,
the currents )
iyand iy, and B l "
the power

absorbed by

680
each of the )
dependent 1.5[kQ] 2.2[kQ] ,
io
sources.




Example Problem #4

 Let'sdo
another
example.
Find the
voltage v,.




This problem is taken from one edition of the
Nilsson and Reidel text, “Electric Circuits”.

Example #5 — Problem 2. 20

The voltage and current were measured at the termu-
nals of the device shown in Fig. P2.20(a). The results
are tabulated in Fig. P2.20(b).

a)

For part a), they mean a
current source in parallel
with a resistance.

Construct a circuit model for this device using
an ideal current source and a resistor.

b) Use the model to predict the value of i, when
a 20 § resistor is connected across the terimi-

nals of the device. :
0, (V) | i (A)
50 0
2 65 3
80 6
o 95 9
110 12
® 5
|25 15
Noor Md Sha ‘ (b
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Series, Parallel, and other
Resistance Equivalent Circuits




Equivalent Circuits — The
nce

o
L)

Equivalent circuits are ways
of looking at or solving circuits.
The idea is that if we can make
a circuit simpler, we can make
it easier to solve, and easier to
understand.

The key is to use equivalent
circuits properly. After defining
equivalent circuits, we will start
with the simplest equivalent
circuits, series and parallel
combinations of resistors.
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Equivalent Circuits:
A Definition

Imagine that we have a circuit, and a portion of the circuit cansoes®
identified, made up of one or more parts. That portion can be replaced
with another set of components, if we do it properly. We call these
portions equivalent circuits.

Two circuits are considered
to be equivalent if they behave
the same with respect to the
things to which they are
connected. One can replace
one circuit with another circuit,
and everything else cannot
tell the difference.

We will use an analogy for equivalent circuits here. This analogy is that of jigsaw puzzle
pieces. The idea is that two different jigsaw puzzle pieces with the same shape can be thought

of as equivalent, even though they are different. The rest of the puzzle does not “notice” a
difference. This is analogous to the case witin esuivalant circuits.



Equivalent Circuits:
A Definition Considered

Two circuits are considered
to be equivalent if they behave
the same with respect to the
things to which they are
connected. One can replace
one circuit with another circuit,
and everything else cannot
tell the difference.

In this jigsaw puzzle, the rest of
the puzzle cannot tell whether the
yellow or the green piece is
iInserted. This is analogous to what
happens with equivalent circuits.
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Series Combination:
A Structural Definition

A Definition: —.

Two parts of a circuit are in series if the
same current flows through both of them.

Note: It must be more than just the same
value of current in the two parts. The same
exact charge carriers need to go through
one, and then the other, part of the circuit.
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Series Combination:
Hydraulic Version of the Definition

A Definition: —.

Two parts of a circuit are in series if the
same current flows through both of them.

A hydraulic analogy: Two water pipes are
in series if every drop of water that goes
through one pipe, then goes through the
other pipe.
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Parallel Combination:
A Structural Definition

A Definition:

Two parts of a circuit are in
parallel if the same voltage is across
both of them.

Note: It must be more than just

the same value of the voltage in the SeZif;en 1
two parts. The same exact voltage Pipe
must be across each part of the Section 2

circuit. In other words, the two end
points must be connected together.

Noor Md Shahriar



Parallel Combination:
Hydraulic Version of the Definition

A Definition:

Two parts of a circuit are in
parallel if the same voltage is across
both of them.

A hydraulic analogy: Two water
pipes are in parallel the two pipes

have their ends connected together. Pipe

The analogy here is between voltage Section 1

and height. The difference between o Pipe >
ection

the height of two ends of a pipe, must
be the same as that between the two
ends of another pipe, if the two pipes
are connected together.
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Parallel Combination:
A Hydraulic Example

A Definition:

Two parts of a circuit are in
parallel if the same voltage is
across both of them.

A hydraulic analogy: Two
water pipes are in parallel if the
two pipes have their ends
connected together. The Pipe
Section 1 and Pipe Pipe
Section 2 (in green) in this set Section 2
of water pipes are in parallel.
Their ends are connected
together.

Pipe
Section 1

Noor Md Sha



Series Resistors Equivalent Circuits

Two series
resistors, R, and
R,, can be replaced
with an equivalent
circuit with a single
resistor Ry, as
long as
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More than 2 Series Resistors

This rule can
be extended to
more than two
series resistors.
In this case, for
N series
resistors, we
have
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Series Resistors Equivalent
Circuits: A Reminder

Two series
resistors, R, and R,,
can be replaced with an
equivalent circuit with a
single resistor R, as
long as

Remember that these two
equivalent circuits are
equivalent only with respect
to the circuit connected to
them.




Series Resistors Equivalent
Circuits: Another Reminder

Resistors R, and R,
can be replaced with a
single resistor R, as
long as

Rest
of the
Circuit

Rest
Ry of the
Circuit

Remember that these two
equivalent circuits are
equivalent only with respect to
the circuit connected to them.
The voltage
Vi, does not exist in the
right hand equivalent. @~ ™~ -




The Resistors Must be in Series

R, and R, are not in
Resistors R, and R, can BISsleipilsigsr

be replaced with a single

resistor Rgq, as long as

Rest
Ry of the
Circuit

Rest
of the
Circuit

Remember also that these
two equivalent circuits are
equivalent only when R, and
R, are in series. If there is
something connected to the
node between them, and it
carries current, (iy = 0) then
this does not work.
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Parallel Resistors
Equivalent Circuits

Two parallel
resistors, R, and R,,
can be replaced with an
equivalent circuit with a
single resistor R, as
long as




More than 2 Parallel Resistors

This rule can be
extended to more than
two parallel resistors.
In this case, for N
parallel resistors, we
have




Parallel Resistors
Notation

We have a special
notation for this
operation. When two
things, Thing1 and
Thing2, are in parallel,
we write
Thing1||Thing2
to indicate this. So, we
can say that

1 1 1

if +
R

EQ R1 Rz ,
then R, =R || R,.




Parallel Resistor Rule for 2 Resistors

When there are
only two resistors, then
you can perform the
algebra, and find that

This is called the product-
over-sum rule for parallel
resistors. Remember that
the product-over-sum rule
only works for two
resistors, not for three or
more.




Parallel Resistors
Equivalent Circuits: A
Reminde

Two parallel
resistors, R, and R,,
can be replaced with a
single resistor R, as
long as

Remember that these two
equivalent circuits are
equivalent only with
respect to the circuit
connected to them.




resistors, R, and R,,
can be replaced with
Req. as long as

Remember that these two
equivalent circuits are
equivalent only with respect
to the circuit connected to
them. The
current ip, does not exist
in the right hand
equivalent.

Parallel Resistors
Equivalent Circuits: Another Reminder

Two parallel

Rest
R, | of the
Circuit

N

A ———————

Rest
of the
Circuit



Go back to
Overview

The Resistors "

Must be in Parallel

Two parallel
resistors, R, and R,,
can be replaced with
Req. as long as

Rest
REQ of the
Circuit

Rest
2 ;| of the
Circuit

Remember also that these
two equivalent circuits are
equivalent only when R,
and R, are in parallel. If
the two terminals of the
resistors are not connected
together, then this does not (
work.

N

A ————-



Why are we doing this?
Isn’t all this obvious?

* This is a good question.

* Indeed, most students come to the study of
engineering circuit analysis with a little
background in circuits. Among the things that
they believe that they do know is the concept
of series and parallel.

 However, once complicated circuits are
encountered, the simple rules that some
students have used to identify
series and parallel combinations
can fail. We need rules that will
always work.
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Why It Isn’t Obvious

* The problem for students in many cases is that they
identify series and parallel by the orientation and
position of the resistors, and not by the way they are
connected.

 In the case of parallel resistors, the resistors do not
have to be drawn “parallel”, that is, along lines with the
same slope. The angle does not matter. Only the
nature of the connection matters.

* In the case of series resistors, they do not have to be
drawn along a single line. The alignment does not
matter. Only the nature of the connection matters.

Go back to

Noor Md Shahriar 14Qverview
slide.



Examples (Parallel)

* Some examples are given here.

R, and R, are in parallel R, and R, are not in parallel
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Go back to
Overview

Examples (Series) ™

* Some more examples are given here.

Rest of

.. Rest of
Circuit

Circuit

R, and R, are in series - .
1 2 R / and R2 are not 1n series




How do we use equivalent circuits?

* This is yet another good question.

«  We will often use these equivalents to simplify circuits, W
them easier to solve. Sometimes, equivalent circuits are used in
other ways. In some cases, one equivalent circuit is not simpler
than another; rather one of them fits the needs of the particular
circuit better. The delta-to-wye transformations that we cover
next fit in this category. In yet other cases, we will have
equivalent circuits for things that we would not otherwise be able
to solve. For example, we will have equivalent circuits for devices
such as diodes and transistors, that allow us to solve circuits that
iInclude these devices.

« The key point is this: Equivalent circuits are used throughout
circuits and electronics. We need to use them
correctly. Equivalent circuits are equivalent
only with respect to the circuit outside them.

Noor Md Shahriar
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Voltage Divider and Current
Divider Rules

-




Voltage Divider Rule —
Our First Circuit Analysis El

The Voltage Divider Rule (VDR)
IS the first of a long list of tools that
we are going to develop to make
circuit analysis quicker and easier.
The idea is this: if the same
situation occurs often, we can derive
the solution once, and use it
whenever it applies. As with any
tools, the keys are:

1. Recognizing when the tool works
and when it doesn’t work. Py

2. Using the tool properly. @‘
%-Ilﬁmh

Noor Md Sha




Voltage Divider Rule —
Setting up the Derivation

.. . f the Circuit
The Voltage Divider Rule involves N

the voltages across series resistors.
Let’'s take the case where we have two
resistors in series. Assume for the
moment that the voltage across these
two resistors, 1S known. ;
Assume that we want the voltage
across one of the resistors, shown here
as . Let’s find it.

TOTAL

| Other Parts of
Noor Md Shahriar the Circuit



Voltage Divider Rule —
Derivation Step 1

The current through both of these L the Cired

resistors is the same, since the
resistors are in series. The current, /,
IS

v

TOTAL

| Other Parts of
Noor Md Shahriar the Circuit



Voltage Divider Rule —
Derivation Step 2

Other Parts
. of the Circuit
The current through resistor R, .

IS the same current. The current,
Iy, 1S

v

TOTAL

| Other Parts of
Noor Md Shahriar the Circuit



Voltage Divider Rule —
Derivation Step 3

. of the Circuit
These are two expressions for the

same current, so they must be equal to
each other. Therefore, we can write

V v .
&L= ML Solving for v, , we get

R R+R

Vv

TOTAL

Rl

Ve =V —
R1 TOTAL .
R, + R,

| Other Parts of
Noor Md Shahriar the Circuit



The Voltage Divider Rule

Other Parts
This is the expression we

wanted. We call this the Voltage
Divider Rule (VDR).

Vv

TOTAL

| Other Parts of
Noor Md Shahriar the Circuit



Go back to

VVoltage Divider Rule — %3
For Each Resistor

. I f the Circuit
This is easy enough to remember that [k

most people just memorize it.
Remember that it only works for
resistors that are in series. Of course,
there is a similar rule for the other
resistor. For the voltage across one )y
resistor, we put R
that resistor value Vi = Voorus S —
in the numerator. R + R,

R2
Vay =V ———
R2 TOTAL
R +R

TOTAL

Other Parts of
the Circuit

-1+2



Current Divider Rule —

Our Second Circuit Analysis ool

The Current Divider Rule (CDR)
IS the second of a long list of tools
that we are going to develop to
make circuit analysis quicker and
easier. Again, if the same situation
occurs often, we can derive the
solution once, and use it whenever it
applies. As with any tools, the keys
are:

1. Recognizing when the tool wo
and when it doesn’t work.

2. Using the tool properly.

Noor Md Shalifié




Current Divider Rule —
Setting up the Derivation

The Current Divider Rule involves
the currents through parallel resistors. Other Parts
Let’s take the case where we have two of the Circuit
resistors in parallel. Assume for the
moment that the current feeding these
two resistors, . 1S known.
Assume that we want the current
through one of the resistors, shown
here as /... Let's find it.

Other Parts of
the Circuit /

Noor Md Shahriar



Current Divider Rule —
Derivation Step 1

Other Parts
of the Circuit
LroTaL l

The voltage across both of these
resistors is the same, since the
resistors are in parallel. The voltage,
Vy, IS the current multiplied by the
equivalent parallel resistance,

Vy =lromr (Rl | R2)> Or

RI R2

Vv, =1 —
X TOTAL
R1 + R2

Other Parts of
the Circuit

Noor Md Shahriar



Current Divider Rule —
Derivation Step 2

The voltage across resistor
R, is the same voltage, v,. Other Party
The voltage, vy, Is Q[ the Cireus,

_ Other Parts of
Noor Md Shahriar the Circuit



Current Divider Rule —
Derivation Step 3

Other Parts
of the Circuit
LroTaL l

These are two expressions for
the same voltage, so they must be
equal to each other. Therefore,
we can write

Rl RZ
R + R,

: : R,
ey = lrorur ——— -
R +R

. Solve for i,,;

el = Ut

Other Parts of
the Circuit

Noor Md Shahriar



The Current Divider Rule

This Is the expression we

wanted. We call this the
Current Divider Rule (CDR). L the Cired

K,

l. = l. .
R1 TOTAL R R
1 + 2

Other Parts of
the Circuit

por Md Shahriar



Go back to
Overview
slide.

Current Divider Rule —
For Each Resistor

Most people just memorize this. *
Other Parts
of the Circuit

Remember that it only works for

resistors that are in parallel. Of course,
there is a similar rule for the other
resistor. For the current through one
resistor, we put the opposite resistor
value in the numerator.

Loy =1
Rl — trorar
R

Lro = lroTar
R Other Parts of
the Circuit




Signs in the Voltage Divider Rule

| - : f the Circuit
As in most every equation we write, R

we need to be careful about the sign in
the Voltage Divider Rule (VDR). Notice
that when we wrote this expression,
there is a positive sign. This is
because the voltage IS In the v
same relative polarity as v..

TOTAL

Other Parts of
the Circuit



Negative Signs in the Voltage Divider Rule

. of the Circuit
If, instead, we had solved for v,

we would need to change the sign
In the equation. This is because
the voltage IS In the

opposite relative polarity from v.

Other Parts of
the Circuit



Go back to
Overview
slide.

Check for Signs in the Voltage Divider Rule

) of the Circuit
The rule for proper use of this

tool, then, is to check the relative
polarity of the voltage across the
series resistors, and the voltage

across one of the resistors.

Other Parts of
the Circuit



Signs in the Current Divider Rule

As In most every equation we
write, we need to be careful about
the sign in the Current Divider
Rule (CDR). Notice that when we errans
wrote this expression, there is a
positive sign. This is because the
current IS In the same
relative polarity as

Other Parts of
the Circuit




Negative Signs in the Current Divider

Rule
If, instead, we had solved
for /,, we would need to Other Parts
change the sign in the g G
equation. This is because the

current IS In the opposite
relative polarity from /.

Other Parts of
the Circuit




Go back to
Overview
slide.

Check for Signs in the Current Divider
Rule

The rule for proper use of
this tool, then, is to check the Other Parts
relative polarity of the current g Cinory
through the parallel resistors,
and the current through one of
the resistors.

Other Parts of
the Circuit



Example Problem #6

Find ; v and Ve

Noor Md Shabhriar
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Delta-to-WYye Transformations

* The transformations, or equivalent circuits, that we cover

next are called delta-to-wye, or wye-to-delta
transformations. They are also sometimes called
pi-to-tee or tee-to-pi transformations. For these lecture
sets, we will call them the delta-to-wye transformations.

* These are equivalent circuit pairs. They apply for parts of
circuits that have three terminals. Each version of the
equivalent circuit has three resistors.

* Many courses do not cover these particular equivalent
circuits at this point, delaying coverage until they are
specifically needed during the discussion of three phase
circuits. However, they are an excellent example of
equivalent circuits, and can be used in some cases to
solve circuits more egagUMg shanriar 171



Delta-to-WYye Transformations

Three resistors in a part of a circuit with three terminals can be
replaced with another version, also with three resistors. The two versions

are shown here. Note that none of these resistors is in series wi
other resistor, nor in parallel with any other resistor. The thr In

this example are labeled A, B, and C.

Rest of Circuit




Delta-to-WYye Transformations
(Notes on Names)

The version on the left hand side is called the delta connectio the
Greek letter A. The version on the right hand side is called t
connection, for the letter Y. The delta connection is also called the pi (x)

connection, and the wye interconnection is also called the tee (T)
connection. All these names come from the shapes of the drawings.

Rest of Circuit Rest of Circuit




Delta-to-WYye Transformations (More
Notes)

When we go from the delta connection (on the left) to th»
connection (on the right), we call this the delta-to-wye transformation.
Going in the other direction is called the wye-to-delta transformation. One
can go in either direction, as needed. These are equivalent circuits.

Rest of Circuit Rest of Circuit




Delta-to-WYye Transformation Equations
When we perform the delta-to-wye tran

(going from left to right) we use the equations !Nen

below.

Rest of Circuit




Wye-to-Delta Transformation Equations

When we perform the wye-to-delta tran?w
(going from right to left) we use the equations given
below.

R RR,+R,R,+RR,
R ’

_RR, +RR + RIRy
’
R2
Rest of Circuit Rest of Circuit _ Rle + R2R3 + R1R3

3
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Deriving the Equations

While these equivalent circuits are useful, perhaps the most important
insight is gained from asking where these useful equations come from.
How were these equations derived?

The answer is that they were derived using the fundam
equivalent circuits. These two equivalent circuits have to behave the same
way no matter what circuit is connected to them. So, we can choose
specific circuits to connect to the equivalents. We make the derivation by
solving for equivalent resistances, using our series and parallel rules, under
different, specific conditions.

_ BB+ RR + Ry
Rl

_ RR,+RR, + R R,
R,

Rest of Circuit




Equation 1

We can calculate the equivalent resistance between terminals A and B,
when C is not connected anywhere. The two cases are shown below. This
IS the same as connecting an ohmmeter, which measures resi
between terminals A and B, while terminal C is left disconnec

Ohmmeter #1 reads R;,, = R || (R, + R;). Ohmmeter #2 reads R,, = R, +R,.

These must read the same value, so R || (R, + R;) =R, + R,.

Ohmmeter #1 Ohmmeter #2

178



Equations 2 and 3

So, the equation that results from the first situation is

Re |[[(Ry+Ry) =R +R,. ’

We can make this measurement two other ways, and get two more equations.
Specifically, we can measure the resistance between A and C, with B left open,
and we can measure the resistance between B and C, with A left open.

Ohmmeter #1 Ohmmeter #2

179




All Three Equations

-

The three equations we can obtain are

RN (Ry+Rp) =R +R,,
R,||(R,+R.)=R +R,, and

R |[[(Ry +R:) =R, +R;.

This 1s all that we need. These three equations can be
manipulated algebraically to obtain either the set of equations
for the delta-to-wye transformation (by solving for R,, R,, and
R;), or the set of equations for the wye-to-delta transformation
(by solving for R, R, and R ).

Noor Md Shahriar 180



Example Problem #1

Find the power delivered by
the source iii this circuit.




Example Problem #2

If we are finding the equivalent
resistance, are R; and K- in series?




Example Problem #3

We are finding the equivalent resistance as
seen from terminals B and D.
Can R> be removed?
[f so, should it be replaced by anything?




Example Problem #4

C

We are finding the equivalent resistance as
seen from terminals B and D.
Can R; be removed?
If so, should 1t be replaced by anything?




Example Problem #5

Find the equivalent resistance as seen from terminals A and B.

17[Q] A 21[Q] 38[Q]
22[Q]
23[Q]
36[Q]
34[Q]
®E
31[Q] 26[Q] 30[Q] .
18[Q]
25[Q] 33[Q] 23[Q)]
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The Node Voltage Method

-




Some Basic Definitions

 Node — a place where two or
more components meet

- Essential Node — a place
where three or more
components meet

 Reference Node — a special
essential node that we
choose as a reference point
for voltages

Review Nodes Skip Review, ot Nodes

hriar



Some Review — Nodes

* Anode is defined as a place
where two or more components
are connected.

* The key thing to remember is
that we connect components
with wires. It doesn’'t matter how
many wires are being used; it
only matters how many
components are connected
together.

* How many nodes are there in
this circuit here?

Noor Md Shahriar 189



How Many Nodes —
Correct Answer

* In the example circuit
schematic given here,
there are three nodes.
These nodes are shown
in dark blue here.

« Some students count
more than three nodes in
a circuit like this. When
they do, it is usually
because they have
considered two points
connected by a wire to be
two nodes.

 There are also three
essential nodes. Each of
these three nodes has at
least 3 components
connected to it.

Noor Md Shahriar 190


Presenter Notes
Presentation Notes
The nodes are the darker blue shapes.  The shape is unimportant to us; we can draw the circuit in many ways.  The key here, for example, is that a voltage source, a current source, and a resistor called RF are connected to the bottom node.


How Many Nodes — Wrong
Answer

In the example circuit
schematic given here, the
two red nodes are really
the same node. There
are not four nodes.

« Remember, two
nodes connected by
a wire were really
only one node in the
first place.


Presenter Notes
Presentation Notes
Remember, two nodes connected by a wire were not really two nodes at all.  It is all one node.


The Node-Voltage Method (NVIM)

The Node-Voltage Method (NVM) is a
systematic way to write all the equations
needed to solve a circuit, and to write just
the number of equations needed. The
idea is that any other current or voltage
can be found from these node voltages.

This method is not that important in very
simple circuits, but in complicated circuits
it gives us an approach that will get us all
the equations that we need, and no
extras.

It is also good practice for the writing of KCL
and KVL equations. Many students
believe that they know how to do this, but
make errors in more complicated
situations. Our work on the NVM will help
correct some of those errors. .. vd shahriar




The Node-Voltage Method (NVM)

The Node-Voltage Method steps are:
1. Find the essential nodes.

2. Define one essential node as the
reference node.

3. Define the node voltages, the
essential nodes with respect to the
reference node. Label them.

4. Apply KCL for each non-reference |\ ilif=celeiln
essential node. these steps by

5. Write an equation for each current |-l tlhrough
or voltage upon which dependent [+

sources depend, as needed. examples.
ReVWRCET*Equations  Skip KCL Review




Kirchhoff’s Current
Law (KCL) — a Review

D
The algebraic (or signed) summation of
currents through any closed surface must
equal zero.

For this set of material, we will always assign a positive
sign to a term that refers to a reference current that

leaves a closed surface, and a negative sign to a term
that refers to a reference current that enters a closed
surface.

Noor Md Shahriar 194



Kirchhoff’s Current
Law (KCL) — a Review Example

* For this set of material, we
will always assign a posmve
sign to a term that refers to a
current that leaves a node,
and a negative sign to a term
that refers to a current that
enters a node.

* In this example, we have
already assigned reference
polarities for all of the
currents for the nodes
indicated in darker blue.

» For this circuit, and using my
rule, we have the following
equation:



Presenter Notes
Presentation Notes
The node that we are using here is highlighted in darker blue.


The Node-Voltage Method steps are:

S1

NVM — 1st Example

Find the essential nodes.

Define one essential node as the
reference node.

Define the node voltages, at the
essential nodes with respect to the
reference node. Label them.

Apply KCL for each non-reference
essential node.

Write an equation for each current or
voltage upon which dependent
sources depend, as needed.

For most students, it seems to be best
to introduce the NVM by doing
examples. We will start with simple
examples, and work our way up to
complicated examples. Our first
example circuit is given here.




NVM — 15t Example — Step 1

S1

The Node-Voltage Method steps are:

Find the essential nodes.

Define one essential node as the
reference node.

Define the node voltages, at the
essential nodes with respect to the
reference node. Label them.

Apply KCL for each non-reference
essential node.

Write an equation for each current or
voltage upon which dependent
sources depend, as needed.

R

We need to find all the essential
nodes, and only the essential nodes.
How many are there?

2



Presenter Notes
Presentation Notes
Answer this question before going to the next slide.


NVM — 15t

The Node-Voltage Method steps are:
Find the essential nodes.

Define one essential node as the
reference node.

Define the node voltages, at the
essential nodes with respect to the
reference node. Label them.

Apply KCL for each non-reference
essential node.

Write an equation for each current or
voltage upon which dependent
sources depend, as needed.

Example — Step 1(Done)

There are three essential
nodes, each of which is shown
In red on the diagram below.

R

2




Is1

The Node-Voltage Method steps are:

NVM — 1st Example — Step 2

Find the essential nodes.

Define one essential node as the
reference node.

Define the node voltages, at the
essential nodes with respect to the
reference node. Label them.

Apply KCL for each non-reference
essential node.

Write an equation for each current or
voltage upon which dependent
sources depend, as needed.

R

We could choose any of the three essential
nodes as the reference node. However,
there are better choices. Remember that
we need to write a KCL equation for each
essential node, except for the reference
node. The best idea, then, is to pick the
node with the most connections, to
eliminate the most difficult equation. Here
this is the bottom node. It is labeled to
show that it is the reference node.

is2

This symbol is used
to designate the
reference node.
There are different
symbols used for
this designation.
This choice of
symbols is not
important. Making a
designation is
important.



NVM — 1st Example — Step 2 Note

The Node-Voltage Method steps are:

Among the symbols that you might see to
Find the essential nodes. designate the reference node are the ones

Define one essential node as the shown below. The choice we use is the

CIREES iee one used in most textbooks.
Define the node voltages, at the
essential nodes with respect to the

reference node. Label them.
Apply KCL for each non-reference
essential node.

Write an equation for each current or
voltage upon which dependent
sources depend, as needed.

R

Reference Node Symbols

L v w

Actually, each of these
is> symbols has a specific
meaning in a formal
circuit schematic.

However, for our
purposes here, the
distinction is not
important.

Is1




NVM — 1st Example — Step 3

The Node-Voltage Method steps are:
Find the essential nodes.

Define one essential node as the
reference node.

Define the node voltages, at the
essential nodes with respect to the
reference node. Label them.

Apply KCL for each non-reference
essential node.

Write an equation for each current or
voltage upon which dependent
sources depend, as needed.

We have defined the node voltages, v,
and v,. They are shown inred. For
clarity, we have also named the nodes
themselves, A and B.

Note: As with any
voltage, the polarity
must be defined. We
have defined the
voltages by showing
the voltages with a “+
and “-” sign for each.
Strictly speaking, this
should not be
necessary. The
words in step 3 make
is2  the polarity clear.
Some texts do not
label the voltages on
the schematic. For
clarity, we will label
the voltages in these
notes.

”»



NVM — 1t Example — Step 4, Part 1

The Node-Voltage Method steps are:
Find the essential nodes.

Define one essential node as the
reference node.

Now, we need to write a KCL equation
for each non-reference essential node.
That means an equation for A and one

Define the node voltages, at the for B. Let’s start with A. The equation
essential nodes with respect to the iS:

reference node. Label them.

Apply KCL for each non-reference VA . VA —V B

essential node. — g + — O

Write an equation for each current or 131 R 0
voltage upon which dependent
sources depend, as needed.




NVM — 1t Example — Step 4, Part 2

The Node-Voltage Method steps are:

Now, we need to write a KCL equation
_ _ for each non-reference essential node.

Define one essential node as the .

reference node. That means an equation for A and one

Define the node voltages, at the for B. Let’s start with A. The equation

essential nodes with respect to the is:
reference node. Label them.

Apply KCL for each non-reference
essential node.

Write an equation for each current or
voltage upon which dependent
sources depend, as needed.

Find the essential nodes.




The Node-Voltage Method steps are:

NVM — Currents Explained 1

The first term comes from Ohm’s Law.
_ _ The voltage v, Iis the voltage across

Define one essential node as the )

reference node. R;. Thus, the current shown in green

Define the node voltages, at the is v,/R,, out of node A, and thus has a
essential nodes with respect to the + sign in this equation.

reference node. Label them.

Apply KCL for each non-reference : VA — YV B

essential node. -+ — lSl -+ = O

Write an equation for each current or
voltage upon which dependent
sources depend, as needed.

Find the essential nodes.




The Node-Voltage Method steps are:

NVM — Currents Explained 2

The current through the current source
_ _ is, by definition, given by the value of

Define one essential node as the .

reference node. that current source. Since the

Define the node voltages, at the reference polarity of the current is

essential nodes with respect to the entering node A, it has a “-” sign.
reference node. Label them.
Apply KCL for each non-reference
essential node.

Write an equation for each current or
voltage upon which dependent
sources depend, as needed.

Find the essential nodes.




Is1

The Node-Voltage Method steps are:

NVM — Currents Explained 3

This current expression also comes
from Ohm’s Law. The voltage v, is the

Find the essential nodes.
Define one essential node as the

reference node. voltage across the resistor R,, and

Define the node voltages, at the results in a current in the polarity

essential nodes with respect to the shown.

reference node. Label them.

Apply KCL for each non-reference VvV, —YV

essential node. —1.. + A4 5 _ O
S1

Write an equation for each current or
voltage upon which dependent
sources depend, as needed.

A + Vyx R2 -

To prove to
yourself that
vy =V, — Vv, take

KVL around the
v, i, loop shown. The
Ry Rs ‘ voltage at A with

respectto B, is

S N T V4~ Vg, Where v,

and v, are both
node voltages.

+ e ——




The Node-Voltage Method steps are:

NVM — 1t Example — Step 4, Part 3

The KCL equation for the A node was:
Find the essential nodes.

Define one essential node as the
reference node.

Define the node voltages, at the
essential nodes with respect to the
reference node. Label them.

Apply KCL for each non-reference
essential node.

Write an equation for each current or
voltage upon which dependent
sources depend, as needed.

Be very careful that
you understand the
signs of all these

~ terms. One of the

2 big keys in these
problems is to get
the signs correct. If
you have
questions, review
this materiai.




NVM — 1t Example — Step 4 — Notes

The Node-Voltage Method steps are:

Some notes that may be helpful:

Find the essential nodes. a) We are actually writing KCL for the closed
Define one essential node as the surfaces shown. You might want to actually
reference node. sketch in your diagrams a closed surface like
Define the node voltages, at the this, so that you don’t miss any currents.
essential nodes with respect to the b) When we write these equations using the
reference node. Label them. conventions we picked, the A node equation
Apply KCL for each non-reference has a positive sign associated with all the
essential node. terms with v,, and a negative sign with all
Write an equation for each current or other node-voltage terms. This is a good way

voltage upon which dependent
sources depend, as needed.

A R

to check your equations.

Is1




NVM — 1st Example — Step 5

The Node-Voltage Method steps are:

There are no dependent sources in this
Find the essential nodes. circuit, so we can skip step 5. We should
Define one essential node as the now have the same number of equations

refe_rence node. (2) as unknowns (2), and we can solve.
Define the node voltages, at the
essential nodes with respect to the

reference node. Label them.

Apply KCL for each non-reference
essential node.

Write an equation for each current or
voltage upon which dependent
sources depend, as needed.

Note that we have
assumed that all
the values of the
resistors and
sources have been

' given. If not, we
will need to get
more information
before we can
solve.




NVM — 2nd Example

Our second example circuit is given here. Numerical values are given
in this example. Let’s find the current i, shown, using the Node-Voltage
Method.




NVM — 2 Example — Step 1

We have 4 essential nodes. We marked them in red in this slide, but
will not mark them in the slides that follow. On your diagrams, you can
always draw them. Remember that two nodes connected by a wire
were really only one node.




NVM — 2" Example — Step 2

We have chosen the bottom right node as the reference node. This
choice is a reasonable one, since it has 5 components connected to i,
more than any other essential node.




NVM — 2nrd Example — Step 3

We have defined the three node voltages. Note that each node voltage
is the voltage at the essential node with respect to the reference node.




NVM — 2rd Example — Step 4

A: —200[mA]+4 Ve Ya— Y
33[Q]  47[Q]

B: —4i, + ey Vs Y5V and
29[QA] 56[Q2] 33[Q]
Ve V4 Ve

C: 200[mA]+-C—4+30[mS]y, +

Q] 391€2]

Now, we write KCL
equations for nodes A,
B, and C. These are
given here. We have
labeled each equation
with the name of the
node for which it was
written.




NVM — 2nd Example — Step 5

Hopefully, it is now clear why we needed step 5. Until this point, we
have 3 equations and 5 unknowns. \We need two more equations.

A: —200[mA]+4 Y8 Ya" Ve _
33[Q]  47[Q]

v V V, —V
B B_|_B A

20007 S6Q] T 33

We get these equations by
writing equations for i,, and v,,
using KCL, KVL and Ohm'’s
Law, and using the node-
voltages already defined. If we
have to define new variables, it
will mean we need more
equations. Let’s write the two
equations we need:

B: —4i, +

C: 200[mA]+-c 4
47[Q

47[Q] 56[Q2] 29[Q] 4iy

Now, we have 5 equations and
5 unknowns.




NVM — 2" Example — Solution

A: —200[mA]+2 e Ya"Ve i,
33[Q]  47[€] 33[Q]

v v vV, —V
B B+B A

20001 5619 33[Q]

B: —4i, +

C: 200[mA]+-c 4
47[Q

+30[mS]v, +

39[Q]

The solution of these

2 /\/\/\/ five equations yields

200[mA] N ix Vo VA = —1 29[V],
47[0)] 56[Q] <N29[Q] 4iy v, =—0.96[ V],

W v. =—11.2[V],

i N =9.87[V], and
C| + v \/ - % VX [ ]
i, =—10.0[mA].
39[Q]




How many node-voltage
equations do | need to write?

« This is a very important question. Itis a good idea to figure this out
before beginning a problem. Then, you will know how many
equations to write before you are done.

- The fundamental rule is this: If there are n, essential nodes, you
need to write n_-1 equations. Remember that one essential node
is the reference node, and we do not write a KCL equation for the
reference node.

« |f there are dependent sources present, then the number of
equations has to increase. In general, each dependent source
introduces a variable which is unknown. If vis the number of
variables that dependent sources depend on, then you need to
write n, -1+v equations.

Go back to
1 @Verview
slide.
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Node-Voltage Method with
Voltage Sources

-



The Node-Voltage Method (NVM)

The Node-Voltage Method (NVM)
IS a systematic way to write all
the equations needed to solve a
circuit, and to write just the
number of equations needed.
The idea is that any other
current or voltage can be found
from these node voltages.

Noor Md Shahriar



The Steps in the Node-Voltage

The Node-Voltage Method steps are:

1.
2.

3.

Find the essential nodes.

Define one essential node as the
reference node.

Define the node voltages, the
essential nodes with respect to the
reference node. Label them.

Apply KCL for each non-reference
essential node.

Write an equation for each current
or voltage upon which dependent
sources depend, as needed.

Noor Md Shahriar
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VVoltage Sources and the NVM

The NVM steps are:
1. Find the essential nodes.
2. Define one essential node as the reference node.

3. Define the node voltages, the essential nodes with
respect to the reference node. Label them.

4. Apply KCL for each non-reference essential node.

5. Write an equation for each current or voltage upon
which dependent sources depend, as needed.

A problem arises when using the NVM when there
are voltage sources present. The problem is in
Step 4. The current through a voltage source can
be anything; the current depends on what the
voltage source is connected to. Therefore, it is not
clear what to write for the KCL expression. We
could introduce a new current variable, but we
would rather not introduce another variable. In
addition, if all we do is directly write KCL equations,
we cannot include the value of the voltage source.




VVoltage Sources and the NVM
T.he NVM steps are: . Solutlon

Find the essential nodes.

Define one essential node as the reference
node. B )

Define the node voltages, the essential nodes
with respect to the reference node. Label
them.

Apply KCL for each non-reference essential
node.

Write an equation for each current or voltage
upon which dependent sources depend, as
needed.




NVM — Voltage Source in
Series with Another Element




NVM — Voltage Source in
Series Step 1

oae Md Shahriar




NVM — Voltage Source Iin
Series Step 2




NVM — Voltage Source in
Series Step 3




NVM — Voltage Source in
Series Step 4 — Part 1

red current
arrow




NVM — Voltage Source in
Series Step 4 — Part 2

red current arrow




NVM — Voltage Source in
Series Step 4 — Part 3




NVM — Voltage Source in
Series Step 4 — Part 4




NVM — Voltage Source in
Series Step 4 — Notes




NVM — Voltage Source in
Series Step 5




NVM — Voltage Source Between
the Reference Node and Another

Essential Node




NVM — Voltage Source Between
the Reference Node and Another
Essential Node — Step 1




NVM — Voltage Source Between
the Reference Node and Another
Essential Node — Step 2




NVM — Voltage Source Between
the Reference Node and Another
Essential Node — Step 3




NVM — Voltage Source Between
the Reference Node and Another
Essential Node — Step 4 — Part 1




NVM — Voltage Source Between
the Reference Node and Another
Essential Node — Step 4 — Part 2




NVM — Voltage Source Between
the Reference Node and Another
Essential Node — Step 4 — Part 3

This equation indicates that the
node-voltage v, is equal to the
voltage source. Take care
about the signs in this
equation. There is no minus
sign here, because the
polarities of v¢ and v, are
aligned.

C

Ve R, <v> sz




NVM — Voltage Source Between
the Reference Node and Another
Essential Node — Step 5




NVM — Voltage Source Between Two
Non-Reference Essential Nodes




NVM — Voltage Source Between Two
Non-Reference Essential Nodes — Steps 1, 2, and 3




NVM — Voltage Source Between Two
Non-Reference Essential Nodes — Step 4 = Part 1




NVM — Voltage Source Between Two

Non-Reference Essential Nodes — Step 4 — Part 2




NVM — Voltage Source Between Two
Non-Reference Essential Nodes — Step 4 — Part 3




NVM — Voltage Source Between Two
Non-Reference Essential Nodes — Step 4 — Part 4




NVM — Voltage Source Between Two
Non-Reference Essential Nodes — Step 4 — Part 5




NVM — Voltage Source Between Two
Non-Reference Essential Nodes — Step 4 — Part 6




NVM — Voltage Source Between Two
Non-Reference Essential Nodes — Step 4 — Part 7

Supernode
Equation




NVM — Voltage Source Between Two
Non-Reference Essential Nodes — Step 4 — Part 8




NVM — Voltage Source Between Two
Non-Reference Essential Nodes — Step 4 — Part 9

dark blue




NVM — Voltage Source Between Two
Non-Reference Essential Nodes — Step 4 — Part 10

Vy= Vs
Rz

V, =V
. A+zS2+— 0, and
R2 R3

o s T




NVM — Voltage Source Between Two
Non-Reference Essential Nodes — Step 4 — Part 11




NVM — Voltage Source Between Two
Non-Reference Essential Nodes — Step 4 — Part 12

- one equation applying KCL tq Super_nOde Al 5=
a supernode around the voltage Equation

source

« one KVL using the voltage

source to relate the two node

voltages




NVM — Voltage Source Between Two
Non-Reference Essential Nodes — Step &

 one equation applying KCL tq .

a supernode around the voltage Equation
source

« one KVL using the voltage

source to relate the two node

voltages




Example Problem: Use the node-voltage method to write a set of
equations that could be used to solve the circuit below. Do not
attempt to simplify the circuit. Do not attempt to solve the equations.

20[Q]

21[Q)]

181V




Week -10

-

Page- (258-335)

257



 Closed Path — a closed loop
which follows components and
wires. This definition effectively
defines paths as following
components and wires.

 Mesh — a closed path that does

not enclose any other closed Different textbooks use slightly
D aths different definitions for these terms. If
. . : : the difference is confusing, stick with
* Planar Circuit — a circuit that sant beol, s ke i 1o be lsls @

can be drawn in a plane, that is, | find meshes, and most students find
without wires that cross without | this to be fairly easy with practice.
touching
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Some Review — Closed Loops

A closed loop can be
defined in this way: Start
at any node and go in
any direction and end up
where you start. Thisis a
closed loop.

* Note that this loop does
not have to follow
components and wires. |t
can jump across open
space. Often we will
follow components, but
we will also have
situations where we need
to jump between nodes
that have no connections.




How Many Closed Paths? —6

* How many closed
paths are there
following the
elements shown?

e The answer Is 6.

 We will show the
closed paths on the
following slides.
Note which are
meshes and which
are not meshes.




Closed Path #1

* Here is closed path
#1. Itis shown in

* |t does not enclose
any other closed
paths.



Closed Path #2

* Here is closed path
#2. Itis shown in

* |t does enclose
another closed path.
(In fact, it encloses
three meshes.)



Closed Path #3

* Here is closed path
#3. Itis shown in

* |t does not enclose
any other closed
paths.



Closed Path #4

* Here is closed path
#4. Itis shown in

* |t does not enclose
any other closed
paths.



Closed Path #5

* Here is closed path
#5. Itis shown in

* |t does enclose
another closed path
(in fact, two).



Closed Path #6

* Here is closed path
#6. Itis shown in

* |t does enclose
another closed path
(in fact, it encloses
two).

* In summary, we have
three meshes in this
circuit.



The Mesh-Current Method
The Mesh-Current Method (MCM) is a (MCM)
Q3

systematic way to write all the
equations needed to solve a circuit,
and to write just the number of
equations needed. It only works with
planar circuits. The idea is that any
other current or voltage can be found
from these mesh-currents.

This method is not that important in very
simple circuits, but in complicated
circuits it gives us an approach that will
get us all the equations that we need,
and no extras.

It is also good practice for the writing of
KCL and KVL equations. Many
students believe that they know how to
do this, but make errors in more
complicated situations. Our work on
the MCM will help correct some of _
those errors. Noor Md Shahriar




w

The Steps in the
Mesh-Current Method (MCM)

necessary. (If we cannot do this,
we cannot use the MCM.)

. Define the mesh currents, by
labeling them. This includes
showing the polarity of each mesh
current.

Apply KVL for each mesh. We will explain

. Write an equation for each current KUEEEEICEI
or voltage upon which dependent Faiiteqisigeiiieisi
sources depend, as needed. several examples.

ReVWRNT*Equations  Skip KVLReview



Kirchhoff’s Voltage Law
(KVL) — a Review

The algebraic (or signed) summation of
voltages around a closed loop must equal
zero. Since a mesh is a closed loop, KVL will

hold for meshes.

For this set of material, we will always go around loops
clockwise. We will assign a positive sign to a term that

refers to a reference voltage drop, and a negative sign to
a term that refers to a reference voltage rise.
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Kirchhoff’s Voltage Law
+ For this set of material, v(KVL) arl Example

will always go around Ioops
clockwise. We will assign a
positive sign to a term that
refers to a voltage drop, and
a negative sign to a term that
refers to a voltage rise.

* In this example, we have
already assigned reference
polarities for all of the
voltages for the loop
indicated in

« For this circuit, and using our
rule, starting at the bottom,
we have the following
equation:

—V, +Vy =V +v, =0




Kirchhoff’s Voltage
Law (KVL) — Notes

For this set of material, we

will always go around loops
clockwise. We will assign a
positive sign to a term that
refers to a voltage drop, and
a negative sign to a term that
refers to a voltage rise.

Some students like to use
the following handy
mnemonic device: Use the
sign of the voltage that is on
the side of the voltage that
you enter. This amounts to
the same thing.




MCM — 1st Example

The Mesh-Current Method steps are:

Redraw the circuit in planar form, if
necessary.

Define the mesh currents, by
labeling them. This includes
showing the polarity of each mesh
current.

Apply KVL for each mesh.

Write an equation for each current or
voltage upon which dependent

S1

R,




MCM — 1st Example — Step 1

The Mesh-Current Method steps are:

1. Redraw the circuit in planar form, if
necessary.

2. Define the mesh currents, by
labeling them. This includes
showing the polarity of each mesh
current.

3. Apply KVL for each mesh.

4. Write an equation for each current or
voltage upon which dependent




The Mesh-Current Method steps are:
1.

MCM — 1st Example — Step 2

Redraw the circuit in planar form, if
necessary.
Define the mesh currents, by labeling

them. This includes showing the
polarity of each mesh current.

Apply KVL for each mesh.

Write an equation for each current or
voltage upon which dependent sources
depend, as needed.

Rz R

274




The Mesh-Current Method steps are:
1.

MCM — 1t Example — Step 2 Note

Redraw the circuit in planar form, if
necessary.

Define the mesh currents, by labeling
them. This includes showing the
polarity of each mesh current.

Apply KVL for each mesh.

Write an equation for each current or
voltage upon which dependent sources
depend, as needed.

R,



Presenter Notes
Presentation Notes
{Note:  it would be good if the mesh current arrows (the three red circular arrows) were animated in this slide.}


Mesh Currents Aren’t Real???




The Mesh-Current Method steps are:
1.

MCM — 1t Example — Step 3 — Part 1

Redraw the circuit in planar form, if
necessary.

Define the mesh currents, by labeling
them. This includes showing the
polarity of each mesh current.

Apply KVL for each mesh.

Write an equation for each current or
voltage upon which dependent sources
depend, as needed.

A: —vg +i R, +(i,—i,)R +i R, =0.

R,




Step 3 — Part 1 — Explanation



Presenter Notes
Presentation Notes
{Note:  it would be good if the mesh current arrows (the three red circular arrows) were animated in this slide.}



Step 3 — Part 1 — Explanation 2

iA iA iB
A: —vgt+v,+v +v, =0
A: vy +i R+, —i,))R +i,R, =0



Presenter Notes
Presentation Notes
{Note:  it would be good if the mesh current arrows (the three red circular arrows) were animated in this slide.}


1.

The Mesh-Current Method steps are:

Example — Step 3 — Part 2

Redraw the circuit in planar form, if
necessary.

Define the mesh currents, by labeling
them. This includes showing the
polarity of each mesh current.

Apply KVL for each mesh.

Write an equation for each current or
voltage upon which dependent sources
depend, as needed.

(iB _iA)Rl +(iB _ic)Rz. =0.

R;




The Mesh-Current Method steps are:
1.

MCM — 1t Example — Step 3 — Part 3

Redraw the circuit in planar form, if
necessary.

Define the mesh currents, by labeling
them. This includes showing the
polarity of each mesh current.

Apply KVL for each mesh.

Write an equation for each current or
voltage upon which dependent sources
depend, as needed.

C: (i.—iy)R, +i.R,— v, +i.R. =0.

R;




The Mesh-Current Method steps are:
1.

MCM — 1t Example — Step 3 — Notes

Redraw the circuit in planar form, if
necessary.

Define the mesh currents, by
labeling them. This includes
showing the polarity of each mesh
current.

Apply KVL for each mesh.

Write an equation for each current or
voltage upon which dependent
sources depend, as needed.

A —vg +i, R +(,—iy))R +i,R, =0

B: (zB i )R, + (i, —i.)R, _0-

—i,) )R, +i R, — vy, +i R,




The Mesh-Current Method steps are:
1.

MCM — 1st Example — Step 4

Redraw the circuit in planar form, if
necessary.

Define the mesh currents, by labeling
them. This includes showing the
polarity of each mesh current.

Apply KVL for each mesh.

Write an equation for each current or
voltage upon which dependent sources
depend, as needed.

A v+, R +(,—iz))R +i,R, =0
B: (i;—i )R +(;—i.)R, =0
C: (i, —iz)R,+i.R,—vg, +i.R, =0

R,




MCM — 2" Example




MCM — 2nd Example — Step 1




MCM — 2"? Example — Step 2




MCM — 2nd Example — Step 3

A: —12[V]+i 17[Q]+i,33[Q]+ (i, —iy)56[Q]+ (i, —i.)27[Q] =0,
B: (i, —i,)56[Q]+i,22[Q]+20[Q]i, =0, and
C: (i.—i,)27[Q]-5v, +i.39[Q] =0.

17[Q] 33[Q] 22[Q)]
+ Vi i
+ ) iz +
12[V] E 5 S56[Q] 20[Qix
27[0]
¢ ®

It




MCM — 29 Example — Step 4

Ar —12[V]+i, 17[Q)+i,33[Q]+ (i —i,)S6[Q] + (i, — i )27[Q] = 0 [REEEES
B: (i, —i,)56[Q]+i,22[Q]+20[Q]i, =0
C: (i.—i,)27[Q]-5v, +i.39[Q]=0

17[Q] 33[Q] 22[Q)]
+ Vi i
+ ) iz +
12[V] E 5 S56[Q] 20[Qiy
27[0]
¢ ®

It




MCM — 2"? Example — Solution
| We have the following equations.

A: —12[V]+i,17[Q]+i,33[Q]+ (i, —ip)56[Q]+ (i, —i)27[Q]=0 i, =i, —i, ‘
B: (i, —i,)56[Q]+i,22[Q]+20[Q]i, =0 v, =i,33[Q]
C: (i. —i,)27[Q]-5v, +i.39[Q] =0

17[Q] 33[Q] 22[Q)]
2 vy The solution is:
¥ | l. A i, =0.6093[A]
vy (¢ of QT D200k i, =0.3782[A]
27[0] i =1.772[A]
* ® i, =02311[A]

vy, =20.11[V]

Sy




The Mesh-Current Method steps are:
1.

w

The Steps in the
Mesh-Current Method (MCM)

Redraw the circuit in planar form, if
necessary. (If we cannot do this,
we cannot use the MCM.)

Define the mesh currents, by
labeling them. This includes
showing the polarity of each mesh
current.

Apply KVL for each mesh.

We will explain

Write an equation for each current tﬁese Sltleps by ‘%Omg
or voltage upon which dependent oS SEVELd
examples.

sources depend, as needed.

Noor Md Shahriar 290



Current Sources and the MCM

The Mesh-Current Method steps are:

Redraw the circuit in planar form, if necessary. (If we cannot do
this, we cannot use the MCM.)

Define the mesh currents, by labeling them. This includes
showing the polarity of each mesh current.

Apply KVL for each mesh.

Write an equation for each current or voltage upon which
dependent sources depend, as needed.

Step 3



Current Sources and the MCM — Solution

The Mesh-Current Method steps are:
Redraw the circuit in planar form, if
necessary. (If we cannot do this, we cannot
use the MCM.)
Define the mesh currents, by labeling them.
This includes showing the polarity of each
mesh current.

Apply KVL for each mesh.

Write an equation for each current or voltage
upon which dependent sources depend, as
needed.

Noor Md Shahriar




MCM — Current Source
as a Part of Only One Mesh




MCM — Current Source
as a Part of Only One Mesh —
Step 1




MCM — Current Source
as a Part of Only One Mesh —
Step 2




MCM — Current Source
as a Part of Only One Mesh —

Step 3— Part 1




MCM — Current Source
as a Part of Only One Mesh —

Step 3— Part 2




MCM — Current Source
as a Part of Only One Mesh —

Step 3— Part 3

These equations indicate that
the mesh current i, is equal to
the current source ig,;, and that
the mesh current i, is equal to
but opposite in sign of the
current source ig,. Take care
about the signs in these
equations.

A i, =1 <
B: (i;—i )R +i;R, +v, =0
C: —ve+i.R, +(@{.—i,)R, =0




MCM — Current Source
as a Part of Only One Mesh —

Step 4

A: i, =i
B: (i;—i )R +i;R,+v; =0
C: —ve+i.R, +(@{.—i,)R, =0

D: i, =-i,




MCM — Current Source as a Part of
Two Meshes




MCM — Current Source as a Part of
Two Meshes — Steps 1 and 2




MCM — Current Source as a Part of
Two Meshes — Step 3= Part 1




MCM — Current Source as a Part of
Two Meshes — Step 3 = Part 2




MCM — Current Source as a Part of
Two Meshes — Step 3 = Part 3

B: (i,—-i,)R,+i,R,+v, =0, and

C: —v, +i. R, +pi, +i.R, =0.




MCM — Current Source as a Part of
Two Meshes — Step 3 — Part 4

B: (i;—i )R, +i,R,+v, =0
+C: —v, +i.R, + pi, +i.R, =0, which gives
B+C: (i;—i,)R, +i,R, +i R, + pi, +i.R, =0.




MCM — Current Source as a Part of
Two Meshes — Step 3 =Part 5




MCM — Current Source as a Part of
Two Meshes — Step 3 — Part 6

+i,R, +i.R, + pi, +i.R, =0

Supermesh Supermesh Equation




MCM — Current Source as a Part of
Two Meshes — Step 3— Part 7

+i, R, +i.R, + piy +i-R,

Supermesh Equation
R3




MCM — Current Source as a Part of

Two Meshes — Ste 3—Part 8

B+C: (i, —i,)R, +i,R, +i R, + pi, +i.R, =0




MCM — Current Source as a Part of
Two Meshes — Step 3 = Part 9




MCM — Current Source as a Part of

Two Meshes — Steps 3&4 — Part 10
A: —ve+i R +(i,—i)R, =0,

B+C: (i, zA)R +i, R, +i. R, +pi, +i.R, =0,
B+C: i. —i, =i, and

Ly Ly—lp=1,.

R,

Vx
+
vV . . : A
S L ; lp Is
_ X
v ]
|




MCM — Current Source as a Part of
Two Meshes — Steps 3&4 — Part 11

A: —ve+i R +({,—i;)R, =0
B+C: (i; —i )R, +i,R, +i R, + pi, +i-R, =0
B+C: i.—i, =i,

v Iy~ =1,




MCM — Current Source as a Part of

Two Meshes — Steps 3&4 — Part 12

* one equation applying KVL
to a supermesh around the
current source

e one equation using the ,
current source to relate the Constraint
two mesh currents Equation

A: —ve+i,R+(,—i3)R, =0
B+C: (i, —i, )R, +i;R, +i.R, + pi, +i R, =0
B+C: i. —i, =i,

Supermesh
Equation

Iy 1~y =1y

R R

AATAA

n e
Vx
¥ A
v ) ) ;
S L : g S
_ X
\J

+

-+




24[Q]

8[Q]

15[V

Example Problem: Use the mesh-current method to write a set of
equations that could be used to solve the circuit below. Do not
attempt to simplify the circuit. Do not attempt to solve the equations.

/
20[Q]

6[Q] 21[Q]

@
.

16[Q] 23[V]

191Q)]

18[V]



Source Transformations Defined

The equivalent circuits called the source transformation can
be defined as follows: [ —

A portion of a circuit where we have a voltage source In
series with a resistance is equivalent to current source In
parallel with a resistance. The resistances for these two
equivalents are equal. These two cases are equivalent as
long as the resistances are equal and if the voltage source and
current source are related by




Notation

A portion of a circuit where we have a voltage sourcesins
series with a resistance is equivalent to current source In
parallel with a resistance. The resistances for these two
equivalents are equal. These two cases are equivalent as

long as the resistances are equal and if the voltage source and
current source are related by

We have used the symbol
to indicate
equivalence here. Some

(13 b
~

textbooks use a double-
sided arrow (< or <), or
even a single-sided arrow
(= or —), to indicate this
same thing.




Note 1

A portion of a circuit where we have a voltage source in seri
resistance is equivalent to current source in parallel with a resistance. The
resistances for these two equivalents are equal. These two cases are
equivalent as long as the resistances are equal and if the voltage source
and current source are related by

This equivalence can go
in either direction. That

is, we can replace the
circuit on the right with

the one on the left, or the
other way around.

Neither one is simpler; we
just prefer one or the
other in some situations.



Note 2

A portion of a circuit where we have a voltage source in series
with a resistance is equivalent to current source in parallel with a
resistance. The resistances for these two equivalents are equalie
These two cases are equivalent as long as the resistances are
equal and if the voltage source and current source are related by

This equation is not really
Ohm’s Law. It looks like
Ohm’s Law, and has the
same form. However, it
should be noted that
Ohm’s Law relates
voltage and current for a
resistor. This relates the
values of sources and
resistances in two
different equivalent
circuits. However, if you
wish to remember this by
relating it to Ohm’s Law,
that is fine.




Note 3

A portion of a circuit where we have a voltage source in series
with a resistance is equivalent to current source in parallel with a
resistance. The resistances for these two equivalents are equalsp
These two cases are equivalent as long as the resistances are
equal and if the voltage source and current source are related by

The polarities of the
sources with respect to
the terminals is important.
If the reference polarity
for the voltage source is
as given here (voltage
drop from A to B), then

the reference polarity for
the current source must
be as given here (current
flow from B to A). This is
one good reason for
naming the terminals of
these equivalents.




Note 4

A portion of a circuit where we have a voltage source in series
with a resistance is equivalent to current source in paralle%
resistance. The resistances for these two equivalents are equal.
These two cases are equivalent as long as the resistances are
equal and if the voltage source and current source are related by

As with all equivalent
circuits, these two are
equivalent only with
respect to the things
connected to the
equivalent circuits. For

example, when these
two equivalent circuits
are connected to an
open circuit, in one the
resistor dissipates
power, and in the other
it does not.




Go back to

Note 5 owrie

A portion of a circuit where we have a voltage source in series with a
resistance is equivalent to current source in parallel with a resistance. The
resistances for these two equivalents are equal. These two
equivalent as long as the resistances are equal and if the voﬁ%
and current source are related by

These equivalent
circuits hold for
dependent sources as
well as independent
sources. The key is
that the variable, which
the dependent sources
depend on, must
remain intact. That s,
the voltage or current
that the dependent
sources use must be
outside of the circuit
being replaced.

l pr—
s
HVx (W, REQ) Vx Rro




Other Useful Transformations

t

There are some other useful transformations, relating to*
can be defined at this point. These transformations do not have mon
name, and in a sense they derive from the definitions of ideal voltage

sources and ideal current sources. Still, since they are equivalent circuits

relating sources, that have much the same form as source transformations,
they are listed in the slides that follow.

i
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Other Useful Transformations — 1

Voltage sources in
series can be replaced
by a single voltage
source, where the
value of the equivalent
source is equal to the
algebraic sum of the
voltage sources it is
replacing. An example
IS shown here with two
sources with random
polarities.




Other Useful Transformations — 2

Current sources
in parallel can be
replaced by a single
current source, where
the value of the
equivalent source is
equal to the algebraic
sum of the current
sources it is
replacing. An
example is shown
here with two sources
with random
polarities.
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Other Useful Transformations — 3

A voltage source
In parallel with
anything can be
replaced by that
voltage source. The
“anything” can be a
resistor, a current
source, or any other
combination of
elements. If the
“anything” is a
voltage source, the
two voltage sources
must be equal for
KVL to hold.
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Other Useful Transformations — 4

A current
source In series
with anything can
be replaced by that
current source.
The “anything” can
be a resistor, a
voltage source, or
any other
combination of
elements. If the
“anything” is a
current source, the
two current
sources must be
equal for KCL to
hold.
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1. These equivalent circuits can go in either direction. That is, we can
replace the circuit on the right with the one on the left, or the other w
around. 4
2. The polarities of the sources with respect to the terminals are
important. This is one good reason for naming the terminals of these
equivalents.

3. As with all equivalent circuits, these are equivalent only with respect to
the things connected to the equivalent circuits.

4. These equivalent circuits hold for dependent sources as well as
iIndependent sources. The key is that the variable, which the dependent
sources depend on, must remain intact. That is, the voltage or current that
the dependent sources use must be outside of the circuit being replaced.




Example Problem

We wish to solve for the voltage . in the circuit
given below. While we could certainly solve this b
writing a series of KVL and KCL equations, we are
going to solve it instead by using a series of equivalent
circuits and simplify the circuit down step by step.




Example Problem — Step 1

We wish to solve for the voltage . in the circuit given
below. We note that we have a voltage source, vg, inisenes
with a resistor, R,. We can replace them with a current source
In parallel with a resistor. When we do, we will have current
sources in parallel and resistors in parallel, which we can
simplify further. So, let’s take the first step.




Example Problem — Step 2

We want to replace the voltage source in series with a resistor,
with a current source in parallel with a resistor. Here, weshawe
made this replacement. Note that we now have two current
sources in parallel, and two resistors in parallel. Since the voltage
we are looking for is outside these combinations, we can replace
them with their equivalents. That is our next step.




Example Problem — Step 3

We have replaced the parallel current sources and
parallel resistors with their equivalents. Now, we canmse
note that we have a current source in parallel with a
resistor. We could replace this with a voltage source in
series with a resistor, and then we could simplify the
circuit further. Let’s do this.

331




Example Problem — Step 4

We have replaced the current source in parallel with a
resistor with a voltage source in series with a resistor. At this
o]!

point, we have three resistors in series, and we wa%
across one of them. This means that we use the voltag ider
rule, and write, R,

A% =y, — =
3
* CR,+R +R,

15[Q]

Ve =S8 TVl e 0130

R5=6.875[Q]

Go to Go back to
Comments 33@V6rview
slide. slide.



Example Problem — Solution

The solution for this problem then is

Go to Go back to

Noor Md Shahriar Comments 33@V6rview
slide. slide.



Example Problem
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Thevenin’s Theorem

-



Thévenin’s Theorem Defined

Thévenin’s Theorem is another equivalent circuit. Thévenin’'s Theorem
can be stated as follows:

Any circuit made up of resistors and sources, viewed from two
terminals of that circuit, is equivalent to a voltage source in seriesS"Withea
resistance.

The voltage source is equal to
the open-circuit voltage for the
two-terminal circuit, and the
resistance is equal to the
equivalent resistance of the circuit.

vy = open-circuit voltage, and

R, = equivalent resistance.

{,

Any circuit |
' made up of |
\ resistors and |

| sources

i
/
/
/
/
/
/

B




Notation

Any circuit made up of resistors and sources, viewed from two
terminals of that circuit, is equivalent to a voltage source in series with a
resistance.

The voltage source is equal to the open-circuit voltage for the
two-terminal circuit, and the resistance is equal to the equivalent resistance
of the circuit.

vy = open-circuit voltage, and

R, = equivalent resistance.

RTH A

We have used the symbol :
“~ to indicate equivalence [,/ made up of

here. Some textbooks use a || ot d |
double-sided arrow (<> or |\ TOS1STOTS ‘alld

<>), or even a single-sided :J sources |
arrow (= or —), to indicate | |

this same thing.




Note 1

Any circuit made up of resistors and sources, viewed from two

terminals of that circuit, is equivalent to a voltage source in series with a
resistance.

The voltage source is equal to the open-circuit voltage forthe o
two-terminal circuit, and the resistance is equal to the equivalent
resistance of the circuit.

vy = open-circuit voltage, and

We have introduced
a term called the
open-circuit voltage.
This is the voltage for
the circuit that we areg
finding the equivalent
of, with nothing
connected to the
circuit. Connecting
nothing means an
open circuit. This
voltage is shown
here.

R, = equivalent resistance.

A RTH A
o
_|_

>
Any circuit
made up of ~

) Vv TH
resistors and 24 _

SOUrces

v
ool )



Note 2

Any circuit made up of resistors and sources, viewed from two
terminals of that circuit, is equivalent to a voltage source in series with a

resistance. J—
The voltage source is equal to the open-circuit voltage for the

two-terminal circuit, and the resistance is equal to the equivalent
resistance of the circuit.

vy = open-circuit voltage, and

R, = equivalent resistance.

A RTH A
o
_|_

We have introduced
a term called the
equivalent
resistance. This is
the resistance for the
circuit that we are
finding the equivalent
of, with the
independent sources
set equal to zero.
Any dependent
sources are left in
place.

Any circuit

made up of ~

resistors and _
sources

vell N
wolk



Note 3

Any circuit made up of resistors and sources, viewed from two
terminals of that circuit, is equivalent to a voltage source in series with a

resistance.

The voltage source is equal to the open-circuit voltage forthe o
two-terminal circuit, and the resistance is equal to the equivalent
resistance of the circuit.

vy = open-circuit voltage, and

The polarities of the
source with respect to
the terminals is
important. If the
reference polarity for the
open-circuit voltage is
as given here (voltage
drop from A to B), then
the reference polarity for
the voltage source must
be as given here
(voltage drop from A to
B).

R, = equivalent resistance.

RTH A

made up of
resistors and
sources

VOC TH

: o]
ol




Note 4

Any circuit made up of resistors and sources, viewed from two

terminals of that circuit, is equivalent to a voltage source in series with a
resistance.

The voltage source is equal to the open-circuit voltage forthe o
two-terminal circuit, and the resistance is equal to the equivalent
resistance of the circuit.

vy = open-circuit voltage, and

R, = equivalent resistance.

As with all equivalent | |
circuits, these two f

are equivalentonly [ / Any circuit \
with respect to the ' made up of \]

things connectedto ' resistors and
the equivalent | sources
circuits.

|

|




Note 5

Any circuit made up of resistors and sources, viewed from two
terminals of that circuit, is equivalent to a voltage source in series with a

resistance.

The voltage source is equal to the open-circuit voltage forthe o
two-terminal circuit, and the resistance is equal to the equivalent
resistance of the circuit.

vy = open-circuit voltage, and

R, = equivalent resistance.

A Ry A
When we have °
dependent sources +
in the circuit shown Any circuit
here, it will mgke made up of ~
some calculations Voc TH

resistors and
sources

more difficult, but
does not change the
validity of the
theorem.

ol W
woll )



Short-Circuit Current — 1

Any circuit made up of resistors and sources, viewed from two

terminals of that circuit, is equivalent to a voltage source in series with a
resistance.

The voltage source is equal to the open-circuit voltage forthe o
two-terminal circuit, and the resistance is equal to the equivalent

resistance of the circuit. _ : :
Vo = open-circuit voltage,

I¢c = short-circuit current, and

A useful concept is Rpp = equlvalent resistance.

the concept of short-

circuit current. This
IS the current that
flows through a wire, Any circuit

or short circuit, made up of
connected to the
terminals of the
circuit. This current
IS shown here as ig.

resistors and
sources v




Short-Circuit Current — 2

Any circuit made up of resistors and sources, viewed from two
terminals of that circuit, is equivalent to a voltage source in series with a
resistance.

The voltage source is equal to the open-circuit voltage forthe o
two-terminal circuit, and the resistance is equal to the equivalent
resistance of the circuit.

Voc = lSCREQ°

When we look at the
circuit on the right,

we can see that the
short-circuit current

Is equal to v,/R
which is also vy/Rz. |
Thus, we obtain the
important expressio

for ig., shown here’




Go back to
Overview
slide.

Extra note

We have shown that for the Thévenin equivalent, the
open-circuit voltage is equal to the short-circuit current™®
times the equivalent resistance. This is fundamental
and important. However, it is not Ohm’s Law.

This equation is not really Ohm’s V m— R .
Law. It looks like Ohm’s Law, and OC SC EQ
has the same form. However, it
should be noted that Ohm’s Law
relates voltage and current for a
resistor. This relates the values of
voltages, currents and resistances in V =Y
two different connections to an ocC TH>
equivalent circuit. However, if you and

wish to remember this by relating it

to Ohm'’s Law, that is fine. REQ — RTH‘

Remember that

Noor Md Shahriar 346



Finding the Thevenin
Equivalent

We have shown that for the Thévenin equivalent, the open-
circuit voltage is equal to the short-circuit current times th_
equivalent resistance. In general we can find the Thevenin
equivalent of a circuit by finding
any two of the following three things:
1) the open circuit voltage, v,

2) the short-circuit current, ig-, and

3) the equivalent resistance, Rg,.

Voc = lSCREQ'

Once we find any two, we can

find the third by using this equation. Remember that

Voc = Vs
and
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Finding the Thevenin
Equivalent — Note 1

We can find the Thévenin equivalent of a circuit by
finding any two of the following three things:

1) the open circuit voltage, vy = vy
2) the short-circuit current, ig, and VOC — ZSCREQ

3) the equivalent resistance, Rgy =4<7y.

One more time, the

reference polarities of

our voltages and | f
currents matter. If we ircuit | Any circuit |

pick v, at A with
made up of

respect to B, then we
need to pick isc going < | \_resistors and
from A to B. If not, we

need to change the

sign in this equation.




Finding the Thévenin

Equivalent — Note 2

We can find the Thévenin equivalent of a circuit by
finding any two of the following three things:

1) the open circuit voltage, vy = v; :
2) the short-circuit current, ig., and VOC — _lSCREQ .

3) the equivalent resistance, Ry = Ry

As an example, if we

pick v, and iy with the
reference polarities
given here, we need to
change the sign in the
equation as shown.

‘ Any circuit

made up of

Any circuit
made up of i

ual , % : SC
This is a consequence | resistors and oe resistors and

of the sign in Ohm’s SOUrces sources

Law. For a further

explanation, see the o °

next slide. B B




o Ai1C OLEC
e C3 d the eve equivalent of 6 ding
0 of the follo o eE o
e OpE oltage, v,
e Sho s anag
~W=Ye =1l= a - --. »
A A

Any circuit
made up of
resistors and
sources

Any circuit
made up of
resistors and
sources

!

As an example, if we pick v, and ig; with the
reference polarities given here, we need to change the
sign in the equation as shown. This is a consequence
of Ohm’s Law, which for resistor R, requires a minus
sign, since the voltage and current are in the active e
sign convention. B




Finding the Thévenin
Equivalent — Note 4

We can find the Thévenin equivalent of a circuit by finding any

two of the following three things:
1) the open circuit voltage, vy = vy,
2) the short-circuit current, ig-, and

~lgc REQ

Any circuit
made up of
resistors and
sources

Any circuit
made up of
resistors and
sources

SC
REQ‘ A

Be very careful here! We have labeled the voltage
across the resistance Ry, as voc. This is true only for
this special case. This v, is not the voltage at A with
respect to B in this circuit. In this circuit, that voltage

is zero due to the short. Due to the short, the voltage
across R Is vy




Go back to
Overview

Notes ™

1. We can find the Thévenin equivalent of any circuit made up of voltage
sources, current sources, and resistors. The sources can be an
combination of dependent and independent sources. h
2. We can find the values of the Thévenin equivalent by finding the open-
circuit voltage and short-circuit current. The reference polarities of these
quantities are important.

3. To find the equivalent resistance, we need to set the independent
sources equal to zero. However, the dependent sources will remain. This
requires some care. We will discuss finding the equivalent resistance with
dependent sources in the fourth part of this module.

4. As with all equivalent circuits, the Thévenin equivalent is equivalent
only with respect to the things connected to it.

' mﬁﬁng@ - o A
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Example Problem

We wish to find the Thévenin equivalent of the circuit
below, as seen from terminals A and B. J——

Note that there is an unstated assumption here; we assume that we
will later connect something to these two terminals. Having found the
Thévenin equivalent, we will be able to solve that circuit more easily by
using that equivalent. Note also that we solved this same circuit in the last
part of this module; we can compare our answer here to what we got then.




Example Problem — Step 1

We wish to find the open-circuit voltage with the
polarity defined in the circuit given below. We have also
defined the node voltage v, which we will use to finc—

In general, remember, we need to find two out of

three of the quantities , -, and . In this problem
we will find two, and then find the third just as a check.

In general, finding the third quantity is not required.




Example Problem — Step 2

We wish to find the node voltage ', which
we will use to find . Writing KCL at th
encircled with a dashed red line, we have




Example Problem — Step 3

Substituting in values, we have
Ve Ve _4[A]+VC—IOO[V]
48[Q]  10[Q] 22[Q)]
0.1663[S]v.. = 4[A]+4.545[A], or
v, =51.4[V].

= (0. Solving, we get

.....



Example Problem — Step 4

Then, using VDR, we can find
Lo, 190
CCC15[Q]+ 33[Q]

. Solving, we get

Note that when we solved this problem before, we got this same
voltage.




Example Problem — Step &

Next, we will find the equivalent resistance, .
The first step in this solution is to set the independent I

sources equal to zero. We then have the circui




Example Problem — Step 6

To find the equivalent resistance, , we simply combine

resistances in parallel and in series. The resistance between

terminals A and B, which we are calling . is found be *
recognizing that R, and R; are in parallel. That parallel

combination is in series with R,. That series combination is in
parallel with R,. We have

Rop ={(R I R)+ R} || R, ={(22[Q]]|10[Q]) +33[Q]} || 15[Q]. Solving, we get
R,, =10.9[Q].

:

e



Example Problem — Step 7
(Solution)

To complete this problem, we would typically redraw
the circuit, showing the complete Thévenin’s equivalentss
along with terminals A and B. This has been done here.
This shows the proper polarity for the voltage source.
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Example Problem — Step 8
(Check)

Let’s check this solution, by finding the short-circuit current in
the original circuit, and compare it to the short-circuit curre%
Thévenin’s equivalent. We will start with the Thévenin’s equivale

shown here. We have




Example Problem — Step 9
(Check)

Let’s find the short-circuit current in the original circuit. We have

Uy Vb a7 Yo TIOVE 6 s oiving, we get
33[Q]  10[Q] 22[Q]
0.1758[S]v, = 4[A]+4.545[A], or
v, =48.6[V].

Note that
resistor R, is
neglected, since
it has no voltage
across it, and
therefore no
current through
it.




Example Problem — Step 10
(Check)

the orlglnal

With this result, we can find the short-circuit current i
circuit.

_ 48. 6[V]

'sc = 33[Q]  33[Q]

This is the same result that we found using the Thévenin’s
equivalent earlier.




Go back to

Example Problem —

slide.

Step 11 (Check)

This is important. This shows that we could indeed have found any
two of three of the quantities: open-circuit voltage, short—cir“
and equivalent resistance.




Sample Problem #1

Find the Thévenin equivalent of the circuit shown, with
respect to terminals a and b. Draw the equivalent, labeling
terminals a and b.

Soln: vy = 24.2[V], RjpemiBr2fke]
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Norton’s Theirem



Norton’s Theorem Defined

Norton’s Theorem is another equivalent circuit. Norton’s Theorem can
be stated as follows:

Any circuit made up of resistors and sources, viewed from two
terminals of that circuit, is equivalent to a current source in parallelFwiti®a
resistance.

The current source is equal to
the short-circuit current for the
two-terminal circuit, and the
resistance is equal to the
equivalent resistance of the circuit.

iy = short-circuit current, and

R, = equivalent resistance.

Any circuit
made up of

resistors and
sources

368




Note 1

It is probably obvious to you, if you studied the last two
parts of this module, that if Thévenin’s Theorem is valld then

Norton’s Theorem is valid, because Norton’s The
simply a source transformation of Thévenin’s Theorem. Note

that the resistance value is the same in both cases, that is,
Ry = Ry = Req.

Vo = open-circuit voltage,

I¢c = short-circuit current, and

Rp, = equivalent resistance.

| Any circuit | Any circuit

' made up of | made up of
\ resistors and | resistors and

sources sources




Note 2

Any circuit made up of resistors and sources, viewed from two

terminals of that circuit, is equivalent to a current source in parallel with a
resistance.

The current source is equal to the short-circuit current for the two=>
terminal circuit, and the resistance is equal to the equivalent resistance of
the circuit.

Vo = open-circuit voltage,

i¢c = short-circuit current, and

The polarity of the
current source with
respect to the terminals
is important. If the

Ry, = equivalent resistance.

reference polarity for the ¢
short-circuit current is

as given here (flowing —Any circuif .

from A to B), then the made up of | ; ~ R ;
reference polarity for the |\ roqistors and | N N SC
current source must be Source =

as given here (current \ v
from B to A).

o
o e




Note 3

Any circuit made up of resistors and sources, viewed from two
terminals of that circuit, is equivalent to a current source in
parallel with a resistance.

The current source is equal to the short-circuit current fo
terminal circuit, and the resistance is equal to the equivalent
resistance of the circuit.

Vo = open-circuit voltage,
i¢c = short-circuit current, and

Ry, = equivalent resistance.

As with all equivalent
circuits, these two

are equivalent only Any circuit
with respect to the made up of
things connected to
the equivalent
circuits.

resistors and
sources




Note 4

Any circuit made up of resistors and sources, viewed from two
terminals of that circuit, is equivalent to a current source in
parallel with a resistance.

The current source is equal to the short-circuit current for thestwessp
terminal circuit, and the resistance is equal to the equivalent
resistance of the circuit.

Vo = open-circuit voltage,

i¢c = short-circuit current, and

Ry, = equivalent resistance.

When we have

dependent sources

In the circuit shown .
here, it will make Any circuit
some calculations mgde up of
more difficult, but resistors and
does not change the sources
validity of the

theorem.




Short-Circuit Current and
Open-Circuit Voltage

The open-circuit voltage that results from the Norton equi
equal to the product of the Norton current source and the Norton
resistance. This leads to the same equation that we used previously, for
the Thévenin equivalent,

Voc = lSCREQ°

When we look at the

circuit on the right,

we can see that the

open-circuit voltage
is equal to iR, | Ay circuit |

which is also iscRz,. |/ made up of
Thus, we obtain the/[' resistors and |
important expression )
for v, shown here. s

SOurces
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Overview
slide.

Extra note

We have shown that for the Norton equivalent, the
open-circuit voltage is equal to the short-circuit current™®
times the equivalent resistance. This is fundamental
and important. However, it is not Ohm’s Law.

This equation is not really Ohm’s V m— R .
Law. It looks like Ohm’s Law, and OC SC EQ
has the same form. However, it
should be noted that Ohm’s Law
relates voltage and current for a
resistor. This relates the values of
voltages, currents and resistances in Jor=1

two different connections to an SC N>
equivalent circuit. However, if you and

wish to remember this by relating it

to Ohm’s Law, that is fine. REQ — RN‘

Remember that
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Finding the Norton Equivalent

We have shown that for the Norton equivalent, the open-circuit
voltage is equal to the short-circuit current times the equi\%
resistance. In general we can find the Norton equivalent of a circu
by finding
any two of the following three things:

1) the open circuit voltage, v,
2) the short-circuit current, ig-, and
3) the equivalent resistance, Rg,.

Once we find any two, we can

find the third by using this equation, Remember that

lsc — Ino

and

Noor Md Shahriar 375
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Finding the Norton
Equivalent — Note 1

We can find the Norton equivalent of a circuit by finding
any two of the following three things: B

1) the open circuit voltage, v,
2) the short-circuit current, ig- = iy, and

3) the equivalent resistance, Ry = Ry, VOC — iSCREQ .

One more time, the

reference polarities of
our voltages and | f
currents matter. If we : | Any circuit \\
pick v, at A with
respect to B, then we

("' made up of

need to pick iy going S | \ resistors and
from A to B. If not, we

need to change the

sign in this equation.



Finding the Norton
Equivalent — Note 2

We can find the Norton equivalent of a circuit by finding
any two of the following three things:

1) the open circuit voltage, v,
2) the short-circuit current, ig- = iy, and

—
3) the equivalent resistance, Reo = Ry. AdpTolam _iSCREQ .

As an example, if we
pick v, and iy with the
reference polarities
given here, we need to
change the sign in the
equation as shown.
This is a consequence
of the sign in Ohm’s
Law. For a further
explanation, see the
next slide.

Any circuit
made up of
resistors and
sources

Any circuit
made up of
resistors and
sources

Yoc

ol W
woll ]



Finding the Norton Equivalent — Note 3

We can find the Norton equivalent of a circuit by finding any

two of the following three things:
1) the open circuit voltage, v,
2) the short-circuit current, i =iy, and
3) the equivalent resistance, Ro = Ry

Any circuit
made up of
resistors and
sources

Any circuit
made up of
resistors and
sources

As an example, if we pick v, and iy with the
reference polarities given here, we need to change the
sign in the equation as shown. This is a consequence
of Ohm’s Law, which for resistor R, requires a minus
sign, since the voltage and current are in the active
sign relationship for R,.

Voc = _ZSCREQ°

A
®
i T ‘N R Voc
N ZSC N
\/
_I_
®
B



Finding the Norton Equivalent — Note 4

We can find the Norton equivalent of a circuit by finding any

two of the following three things:
1) the open circuit voltage, v,
2) the short-circuit current, i =iy, and
3) the equivalent resistance, Ro = Ry

Any circuit
made up of
resistors and
sources

Any circuit
made up of
resistors and
sources

Be very careful here! We have labeled the current
through R, as iy~ This is true only for this special
case. This iy is not the current through the open
circuit. The current through an open circuit is always
zero. The current i only goes through R, because of
the open circuit.

Voc = _ZSCREQ°

A
o
: Ly~ v
. (T) i R, “oc
—
\ _|_
o
B



Notes

1. We can find the Norton equivalent of any circuit made up of voltage
sources, current sources, and resistors. The sources can be an
combination of dependent and independent sources. *
2. We can find the values of the Norton equivalent by finding the open-
circuit voltage and short-circuit current. The reference polarities of these
quantities are important.

3. To find the equivalent resistance, we need to set the independent
sources equal to zero. However, the dependent sources will remain. This
requires some care. We will discuss finding the equivalent resistance with
dependent sources in the fourth part of the module.

4. As with all equivalent circuits, the Norton equivalent is equivalent only
with respect to the things connected to it.

e L i K RO T




Example Problem

We wish to find the Norton equivalent of the
circuit below, as seen from terminals A and-Buss

Note that there is an unstated assumption here; we assume
that we will later connect something to these two terminals. Having
found the Norton equivalent, we will be able to solve that circuit

more easily by using that equivalent.




Example Problem — Step 1

We wish to find the open-circuit voltage with the
polarity defined in the circuit given below.

In general, remember, we need to find two ow
three of the quantities vy, ise, and Rp,. In this problem
we will find two, and then find the third just as a check.

In general, finding the third quantity is not required.




Example Problem — Step 1 (Note)

We wish to find the open-circuit voltage with the polarity defined in the
circuit given below. B

Some students may be tempted to remove resistor R; from
this circuit. We should not do this. In future problems, if we
are asked to find “the equivalent circuit seen by resistor R;”,
then we assume that the resistor “does not see itself”’, and
remove it. In this problem, we are not given this instruction.
Leave the resistor in place, even though the open-circuit
voltage is across it.




Example Problem — Step 2

We wish to find the voltage . Writing KCL
at the node encircled with a dashed red Iiw




Example Problem — Step 3

Substituting in values, we have
Voc n Voc _I_Voc_54[V]
37[Q] 22[Q] 27[Q]

Vo (0.1095[S]) = 2[A], or
v =18.3[V].

=0, or by solving




Example Problem — Step 4

Next, we will find the equivalent resistance, :
The first step in this solution is to set the independent
sources equal to zero. We then have the circuiw

Note that the
voltage source
becomes a short
circuit, and the
current source
becomes an open

circuit. These
represent zero-
valued sources.




Example Problem — Step &

To find the equivalent resistance, , we simply combine
resistances in parallel and in series. The resistance between

terminals A and B, which we are calling , is found bymw
recognizing that R; and R, are in series. That series co

is in parallel with R,. That parallel combination is in parallel with

R;. We have

R, =(Ry+R,)|| R || R, =37[Q] ]| 27[€]]| 22[Q]. Solving, we get
R,, =9.13[Q].




Example Problem — Step & (Note)

To find the equivalent resistance, , we simply combine resistances in
parallel and in series. The resistance between terminals A and B, which we
are calling , is found by recognizing that R; and R, are in series. That

series combination is in parallel with R,. That parallel combi
parallel with R;. We have

o :Bé +R,) || R, | R, =37[Q] || 27[Q] ]| 22[Q]. Solving, we get

Some students may [9.13[Q].
have difficulty

getting this

expression. R=

Remember that we
are finding the
resistance seen at

these two terminals,
A and B. The idea
is that we would
have this resistance
if you connected a T
source to these two

R

terminals.




Example Problem — Step 6 (Solution)

To complete this problem, we would typically redraw
the circuit, showing the complete Norton’s equiv%
along with terminals A and B. This has been done here.

To get this, we need to use our equation to get the
Norton current,

Voc = iyRgp- We will want to

solve for iy, sO we write

i =Yoc 183Vl 5 goray

Ry 9.13[Q]




Example Problem — Step 7 (Check)

Let us check this solution, by finding the short-circuit currenisinmm
the original circuit, and compare it to the short-circuit current in the
Norton’s equivalent. \We redraw the original circuit, with the short
circuit current shown. We wish to find this short circuit current,




Example Problem — Step 8 (Check)

We start by noting that that there is no current through resistor R,
since there is no voltage across it. Another way of saying tWe

resistor R is in parallel with a short circuit. The parallel combination of
the resistor and the short circuit, will be a short circuit.

The same exact argument can be made for the series combination of
Rs;and R,. This series combination is in parallel with a short circuit.
Thus, we can simplify this circuit to the circuit on the next slide.

+
iS= 4 Ve R3= R4=
9[A] 54[V] i 22[Q] 10[Q]
y




Here, we
have removed
resistors R;, R,
and R; since
they do not
affect the short
circuit current,

. When we
look at this
circuit, we note
that the voltage
source Vg is
directly across
the resistor R,,
and so we can
write directly,

Example Problem — Step 9 (Check)




Example Problem — Step 10 (Check)

This shorjt-circuit current is the same result that we found in the
Norton’s Equwalelnt. earlier. B
In retrospect, it is now clear that we did not take the best possible

approach to this solution. If we had solved for the short-circuit current,
and the equivalent resistance, we would have gotten the solution more

quickly and more easily.

One of our goals is to be so good at circuit analysis that we can see
ahead of time which approach will be the best for a given problem.




Thévenin’s and Norton’s Theorems
Reviewed

Thévenin’'s Theorem and Norton’s Theorem can be stated as follows:

Any circuit made up of resistors and sources, viewed frorr%
terminals of that circuit, is equivalent to a voltage source in series with'a

resistance, or to a current source in parallel with a resistance.

The voltage source is equal to the open-circuit voltage for the two-
terminal circuit, the current source is equal to the short-circuit current for
that circuit, and the resistance is equal to the equivalent resistance of that
circuit.

Any circuit
made up of
resistors and
sources

e T




Equivalent Resistance Reviewed

When we find the equivalent resistance for a Thévenin’s equivalent or a
Norton’s equivalent, we set the independent sources equal to zero, and
find the equivalent resistance of what remains.

When a dependent source is present, trying to find the equivalent
resistance results in a situation we have not dealt with yet. What do we
mean by the equivalent resistance of a dependent source?

The answer must be stated carefully. If the ratio of voltage to current
for something is a constant, then that something can be said to have an
equivalent resistance, since it is behaving as a resistance.

Any circuit
made up of
resistors and
sources

e T




Equivalent Resistance of a Source

So, what we mean by the equivalent resistance of a
dependent source is that in this case the ratio of voltage to
current is a constant. Then the source can be said to'have an
equivalent resistance, since it is behaving as a resistance.
The equivalent resistance of a dependent source depends on
what voltage or current it depends on, and where that voltage
or current is in the circuit. It is not easy to predict the answer.

[

. o
/ Any circuit |

' made up of |
\ resistors and
| sources




No Equivalent Resistance for an
Independent Source

The equivalent resistance of a dependent source, in this
case, is the ratio of voltage to current, which is a c
Then the source can be said to have an equivalent resistance,
since it is behaving as a resistance. This will only be
meaningful for a dependent source. It is not meaningful to talk
about the equivalent resistance of an independent source.
The ratio of voltage to current will not be constant for an
iIndependent source.

If

. . \\
/ Any circuit |

' made up of |
\ resistors and
| sources




Simple Example with a Dependent

Source
We will try to explain this by starting with a simple example.

We wish to find the equivalent resistance of the circuit below,
as seen at terminals A and B. -

This will mean that the ratio of the voltage across the
circuit, labeled v, to the ratio of the current through the circuit,

labeled /., must be a constant. Let’s find that constant by
finding the ratio.

/
/

/ made up of
/, |

I Any circuit |

. resistors and
\ dependent
|

/

SOUrcces




Simple Example with a Dependent
Source — Step 1

We wish to find the equivalent resistance of the circuit below, as seen
at terminals A and B.

Let’s find the ratio of the voltage across the circuit, labeled " {o"the
ratio of the current through the circuit, labeled /. This must be a constant.

Let’s look first at the circuit equivalent on the right. We note that from
Ohm’s Law applied to R,, we can say

vy, =iy Ry

A

Next, we apply KCL at

the A node to write that ,/J Any circuit \
/ made up of

_|_

Yo

. resistors and |
\ dependent
~sources

iy =iy +3iy.




Simple Example with a Dependent
Source — Step 2

We wish to find the equivalent resistance of the circuit
below, as seen at terminals A and B. On the last slide we
found v, and we found /.. We take the ratio of them, g
In the expressions that we found for each. When we do this,

we get

Note that ratio is a
constant. The ratio
has units of resistance,
which is what we
expect when we take a
ratio of a voltage to a
current.

. Any circuit |
/ made up of

. resistors and |
\ dependent
|

sources |




Simple Example with a Dependent
Source — Step 2 {Note)

We wish to find the equivalent resistance of the circui
below, as seen at terminals A and B. Let’s find the ratio of the
voltage across the circuit, labeled v, to the ratio o_nt
through the circuit, labeled /.. We take the ratio of them, and
get

The dependent source is

in parallel with the

resistor R,. Since the
parallel combination is | Any circuit |
25[€2], the dependent / made up of
source must be behaving resistors and |
as if it were a 33.33[Q] dependent
resistor. However, this | sources |

value depends on R,; in
fact, it 1s R, /3.




29 Simple Example with a
Dependent Source — Step 1

Next, we apply KCL at A
the A node to write that J
| Any circuit | " i
/ made up of \ Yo o~ . Yo
Note the change in resistors and ‘s~ N<p =
polarity for the source, dependent f 3 iy 10()?(2]
from the previous /' sources | _
example. \ _L. °
,)\// B B



29 Simple Example with a
Dependent Source — Step 2

We wish to find the equivalent resistance of the circuit
below, as seen at terminals A and B. On the last slide we
found v, and we found /.. We take the ratio of them; anespiug
In the expressions that we found for each. When we do this,
we get

Vo _ xRy _ixRy R, _100[Q]

i, iy-3i, -2, -2 =2
Note that ratio has
changed when we

simply changed the | 4
polarity of the '~ Any circuit |
dependent source. / made up of |
The magnitude is not  |[IRESRIOSE

the only thing that \ dependent f
changed; the /" sources |

equivalent resistance
is now negative!




Simple Example with a Dependent
Source — Step 2 {Note)

We wish to find the equivalent resistance of the circui
below, as seen at terminals A and B. Let’s find the ratio of the
voltage across the circuit, labeled v, to the ratio o_nt
through the circuit, labeled /.. We take the ratio of them, and
get

Vo IyR, iyR, R, 100[Q]

l

o iy =3, 20, 2 =2

The dependent source is
in parallel with the
resistor R,. Since the

parallel combination is " Any circuit | i
-50[QY], the dependent / made up of |
source must be behaving | CRR
as if it were a-33.33[Q] NS A

resistor. This value /' sources
depends on Ry; in fact, it [§8
iS 'RX /3 .




Note 1

When we find the equivalent resistance for a Thévenin’s
equivalent or a Norton’s equivalent, we set the independent
sources equal to zero, and find the equivalent resistance.ef

what remains.

We can see that the equivalent resistance can be
negative. This is one reason why we have been so careful
about polarities all along. We need to get the polarities right
to be able to get our signs right.

A

A RTH A
® @
Any circuit
mE}de up of ~v., = R,
resistors and
sources
B B B
o - o @




Note 2

When we find the equivalent resistance for a Thévenin’s equivalent or
a Norton’s equivalent, we set the independent sources equal to zero, and
find the equivalent resistance of what remains.

In the simple examples that we just did, we were effecting a
source to the terminals of the circuit. This results in a circuit like others
that we have solved before, and we can find the ratio of voltage to current.
This is usually easier to think about for most students. Itis as if we were
applying a source just to test the circuit; we call this method the Test-
Source Method.

° >

A RTH A
@
Any circuit
mE}de up of ~v., = R,
resistors and
sources
B B
@ . @

e T




Test-Source Method — Defined

To get the equivalent resistance of a circuit, as seen by two terminals of that
circuit, we follow these steps.

1) Set all independent sources equal to zero.
2) Find the equivalent resistance. B

c)

b)

If there are no dependent sources, find this equivalent resistance using
the equivalent resistance rules that have been used before. These
include series combinations, parallel combinations, and delta-to-wye
equivalents.

If there are dependent sources present, apply a test source to the two
terminals. It can be either a voltage source or a current source.

1) If you apply a voltage source,
find the current through that
voltage source.

2) If you apply a current source,
find the voltage across that

current source. Any circuit
3) Then, find the ratio of the voltage to the made up of

current, which will be the resistors and

equivalent resistance. dependent

SOurces

Noor Md Shahriar




Test-Source Method — Note 1

To get the equivalent resistance of a circuit, as seen by two terminals of that
circuit, we follow these steps.

1) Set all independent sources equal to zero.

2) Find the equivalent resistance. B
a) Ifthere are no dep_endent sour: always
the equivalent resistance rules
include series combinations, pi

equivalents.

b) If there are dependent sources present, apply a test source to the two
terminals. It can be either a voltage source or a current source.

1) If you apply a voltage source,
find the current through that
voltage source.

2) If you apply a current source,
find the voltage across that

current source. Any circuit
3) Then, find the ratio of the voltage to the made up of

current, which will be the resistors and

equivalent resistance. dependent

SOurces

Noor Md Shahriar




Test-Source Method — Note 2

To get the equivalent resistance of a circuit, as seen by two terminals of that
circuit, we follow these steps.

1) Set all independent sources equal to z
2) Find the equivalent resistance.
a) If there are no deperdciitsources, 1Ina NIs equivalent resistance using
the equivalent resistance rules that have been used before. These

include series combinations, parallel combinations, and delta-to-wye
equivalents.

b) If there are dependent sources present, apply a test source to the two
terminals. It can be either a voltage source or a current source.

1) If you apply a voltage source,
find the current through that
voltage source.

2) If you apply a current source,
find the voltage across that

current source. Any circuit
3) Then, find the ratio of the voltage to the made up of

current, which will be the resistors and

equivalent resistance. dependent

SOurces

Noor Md Shahriar




Test-Source Method — Note 3

To get the equivalent resistance of a circuit, as seen by two terminals of that
circuit, we follow these steps.

1) Set all independent sources equal to z
2) Find the equivalent resistance.

a) If there are no dependeiit SourdS S S SO TNNTTToNTETooss
the equwalent resistance rules that have been used before These
include series combinations, parallel combinations, and delta-to-wye
equivalents.

b) If there are dependent sources present, apply a test source to the two
terminals. It can be either a voltage source or a current source.

1) If you apply a voltage source,
find the current through that
voltage source.

2) If you apply a current source,
find the voltage across that

current source. Any circuit
3) Then, find the ratio of the voltage to the made up of

current, which will be the resistors and

equivalent resistance. dependent

SOurces

Noor Md Shahriar




Test-Source Method — Note 4

To get the equivalent resistance of a circuit, as seen by two terminals of that
circuit, we follow these steps.

1) Set all independent sources equal to z
2) Find the equivalent resistance.

a) If there are no dependent sour
the equivalent resistance rules that nave peen usea perore. 1 nese
include series combinations, parallel combinations, and delta-to-wye
equivalents.

b) If there are dependent sources present, apply a test source to the two
terminals. It can be either a voltage source or a current source.

1) If you apply a voltage source,
find the current through that
voltage source.

2) If you apply a current source,
find the voltage across that

current source. Any circuit
3) Then, find the ratio of the voltage to the made up of

current, which will be the resistors and

equivalent resistance. dependent

SOurces

Noor Md Shahriar




Test-Source Method — Note 5

To get the equivalent resistance of a circuit, as seen by two terminals of that
circuit, we follow these steps.

1) Set all independent sources equal to z
2) Find the equivalent resistance.

a) If there are no dependent sour
the equivalent resistance rules that nave peen usea perore. 1 nese
include series combinations, parallel combinations, and delta-to-wye
equivalents.

b) If there are dependent sources present, apply a test source to the two
terminals. It can be either a voltage source or a current source.

1) If you apply a voltage source,
find the current through that
voltage source.

2) If you apply a current source,
find the voltage across that

current source. Any circuit
3) Then, find the ratio of the voltage to the made up of

current, which will be the resistors and

equivalent resistance. dependent

SOurces

Noor Md Shahriar




Go back to
Overview

Notes

1. The Test-Source Method usually requires some practice
before it becomes natural for students. Itis importam
several problems to get this practice in.

2. There is a tendency to assume that one could just ignore
the Test-Source Method, and just find the open-circuit voltage
and short-circuit current whenever a dependent source is
present. However, sometimes this does not work. In
particular, when the open-circuit voltage and short-circuit
current are zero, we must use the Test-Source Method. Learn
how to use it.

slide.




Example Problem

We wish to find the Thévenin equivalent of
the circuit below, as seen from terminals A ancs»
B.

R=
10[kQ]

e



Example Problem — Step 1
We wish to find the Thévenin equivalent of the circuit
below, as seen from terminals A and B. R

We will start by find the open-circuit voltage at the
terminals, as defined below.




Example Problem — Step 2

To find v, we will first find v,,, by writing KCL at the top

vV, =V, vV, .
+0+—=—1i :O.»
Rl R3 .

center node. We have




Example Problem — Step 3

We can substitute in the value for ig, 25[mS]v.. We note
that since the current through R, is zero. the voltage across it

40 +2—D— 25[mS]v,. =0, or

IS zero, SO v Is zero. So, we write LI
Rl
v, =5V,

Rl

R~
10[kQ]




Example Problem — Step 4

Next, we substitute in values and solve for v,,. We write

—4v, v,

220kQ] - 10[kO)]

= 0. With some math, we find

R~
10[kQ]




Example Problem — Step &

Now, we can take KVL around the loop, and we write

—v, +v. +V,. =0, and so

The Thévenin voltage is equal to this open-circuit voltage, so
the Thévenin voltage must be zero. The short-circuit current
will also be zero. To get the resistance, we need to use the
Test-Source
Method.




Example Problem — Step 6

We have applied a test current source to the two terminals. \We have
also labeled a voltage across this current source, .. This voltage has
been defined in the active sign relationship for the current sourcesAsap
noted earlier, this will give us the passive sign relationship for and  for
the circuit that we are finding the equivalent resistance of. Thus, we will




Example Problem — Step 7

We have applied a test current source to the two terminals. We don't
need to do this, but doing so makes it clear that we are now just solving
another circuit, like the many that we have solved before. We haveeuen
given the source a value, in this case, 1[A]. This is just a convenience.
Many people choose to leave this as an arbitrary source. We choose to
use a value, an easy value like 1[A], to allow us
to find an actual value for




Example Problem — Step 8

We have applied a test current source to the two terminals. A test

voltage source would have been just as good. We chose a current
source because we thought it might make the solution a little easiemsince

we can find v so easily now. But it really does not matter. Don't worry
about which one to choose. Let us solve.




Example Problem — Step 9

Let us solve for v,. We note that we can write an expression for v,
using Ohm’s Law, and get

v, =—I[A]R, = —-5600[V].[

This voltage may seem very large. Don't let this bother you.
We do not actually have this voltage; it is just for calculating
the resistance.




Example Problem — Step 10

Next, let’'s write KCL for the top center node. We get

vy, =S5V Vv tuti
D D _j +-2_j =0, or by substituting,
R, R,

A/ Ty W
2.2[kQ] 10[kQ)]

—25[mS](-5600[V]) = 0.




Example Problem — Step 11

Solving for v, yields _4VD v,

220k 10[kO]
(~1.72[mS])v,, = —139[A], or
v, =80,900[V].




Example Problem — Step 12

Taking KVL, we get

—v, +Vv.+v, =0, or
v, =v, —v,. =80,900[V]- (—5600[V]) = 86,500 V.




Example Problem — Step 13

So, we can find the equivalent resistance by finding

0 86500V o6 sy

[A]




Example Problem — Step 14

So, the Théevenin equivalent is given in the circuit below.
Note that the Thévenin voltage is zero, and so we don't even
show the voltage source at all. The Thévenin resistance s
shown, and in this case, it is the Thévenin equivalent.

REQ

86.5[kQ]

Noor Md Shahriar 428



Example Problem #1

For the circuit given below, find the Norton equivalent
as seen by the current source. ﬂ
Find the power delivered by the current sour

circuit.




Sample Problem #2

a) Find the Norton equivalent as seen by the 22[k€] resistor.

b) Use this circuit to solve for i, ’

l‘ =
10i ~ _
IO(S)][V] \ 33[k_Q] 22(kQ] 18[ke2] Y 12[mA]




Sample Problem #2

3. a) Find the Norton equivalent as seen by the 22[kQ)] resistor.
b) Use this circuit to solve for i

0"

l‘ =
10i ~ _
IO(S)I[V] \ 33[k_Q] 22(kQ] 18[ke2] Y 12[mA]
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Superposition

The circuits we cover in this
course fit into the category that are
called Linear Circuits. This will be
true as long as the circuits are
made up of only the five basic
circuit elements that we introduce
In this course.

One of the definitions of Linear g
Circuits is that Linear Circuits are g™
the circuits where superposition
holds. If for no other reason, we B
should know what superposition is, 4
so that we can understand this
deﬂ nition. Noor Md Shahriar

Two slits produce an
interference pattern




Superposition — Statement

Superposition can be stated in the following way, in the
context of Circuit Analysis.

If there are more than one independent sources in.a:Eikguit,
then any voltage or current in that circuit can be found by
taking one independent source at a time, setting all other
independent sources to zero, and solving for that voltage or
current. This process is then repeated for all of the
iIndependent sources. Then, all of the obtained voltages or
currents, for each independent source, can be added to find
the desired voltage or current.

Rc




Superposition — Emphasis on
Independent Sources

T AR e

Superposition, in the context of Circuit Analysis, says that if
there are more than one independent sources in a circuit,
then any voltage or current in that circuit can be found by
taking one independent source at a time, setting all other
independent sources to zero, and solving for that voltage or
current. This process is then repeated for all of the
independent sources. Then, all of the obtained voltages or
currents, for each independent source, can be added to find
the desired voltage or current.

We have bolded the word independent in this statement to emphasize
that it does not apply to dependent sosHsas: 436



Superposition — General Example

Superposition, then, means that in the circuit above, the
current i, can be found by taking v, setting i, equal to zero,
and solving for the current i, , that results. Then, we would
take i,, setting v, equal to zero, and solving for the current i,
that results. Then, we would find i, by using the equation

We could do the same kind of thing for the voltage v,.

Noor Md Shahriar 437



Superposition — Numerical Example

Re=2.2[kQ)]

RE.:
3.9[k¢

We will try to make this more clear by doing a specific,
numerical example. Consider the circuit shown here, with
numerical values for the components. We will solve for i, and
v, using superposition. We will use the equations

Noor Md Shahriar 438



Superposition — Numerical Example
Step 1

Reo=2.2[kQ]

We begin by taking the v, source, and setting the i, source
equal to zero. We obtain the circuit above, and solve by
writing VDR,

Noor Md Shahriar 439



Superposition — Numerical Example
Step 2

Reo=2.2[kQ]

Noor Md Shahriar 440



Superposition — Numerical Example
Step 3

We continue by taking the i, source, and setting the v,
source equal to zero. We obtain the circuit above, and solve
by writing CDR,

Noor Md Shahriar 441



Superposition — Numerical Example

Step 4
Rp= Rp= C
3.9[kQ] ‘ 5.6[kQ)]

We can next find v,, through Ohm’s Law as

Re=2.2[kQ)]

Vg = iRy =(=778.3[ uA])x(3.9[kQ]), or
vyp =—3.035[V].

Noor Md Shahriar




Superposition — Numerical Example i,

Solution
Rp= ’
3.9[kQ] |

We can now say that

iy =lyy+iy =1572[mA|-0.7783[mA|, or

i, =794[ uAl.

Noor Md Shahriar 443



Superposition — Numerical Example v,

Solution
1? : _ 'F.-,
3.9[kQ] |

We can now say that

Vy =V, + Ve =6.132[V]-3.035[ V], or

vy =3.097[V].

Noor Md Shahriar 444



Solving without Superposition —
Numerical Example

E‘:}L'
RE: RD =
3.9[kQ] 5.6[kQ]

We now note we could have written KCL in this circuit to
get that

Re=2.2[kQ)]

_|_
3.9[kQ]
vy =3.097[V].

This would give us the same answer, more easily than by
using Supel’pOSition. Noor Md Shahriar 445




Notes

1. We found that superposition means that we can find voltage*

currents by adding the inputs of each of the independent sources, taking
each independent source one at a time.

2. This superposition approach, however, is not really a very efficient way

to solve the problems we have at this point.
3. Laterin this course, we will introduce a situation where superposition

allows us to use a technique we will call phasor analysis in places where
we can take a much more efficient approach using that superposition
concept. So, soon it will be very valuable.




Example Problem

We wish to use superposition to find, vy, In

the circuit below. Y

This will give us a chance to show what having three
independent sources means, and how to handle dependent

sources.




Example Problem — Step 1

We begin by taking v,, and setting iy and v, equal to
zero. Note that we do not set the dependent source v,
to zero.

Re=2.2[kQ) VG =471k Qi

Rp=
3.9[kQ)]

\j

Vg vﬂ—lzl\;J vy —4.7kQ|
39[kQ]” 22[kQ] | 5.6[kQ]

XA _ 0, and

. v .
[y = 3.9[‘;(4@]. Solving, vy, =8.089[V].




Example Problem — Step 2

Our next step involves taking iz, and setting v, and
v, equal to zero. Note that we do not set the dependent
source v, to zero.

R;.::
3.9[kQ]

e o]

3.9[kQ] " 2.2[kQ]

. v .
iyp = 3.9622]. Solving, vy, =—4.004[ V].




Example Problem — Step 3

Finally, by taking v, and setting v, and i, equal to
zero. Note that we do not set the dependent source v,

Re-= 2.2[kQ)] ve = 4. 7TkQixr

—NV\—O

VXF

R, D5 6[kQ)]

3.91kQ] 'm
ve=32[V]
Vr v Var =47 [kQ]iye ~32[V]
3.9[kQ] " 2.2[kQ)] 5.6[kQ]

=0, and

. v .
[yp = 3.9622]. Solving, v, =8.474[V].




Example Problem — Step 4

We now solve for v,, writing

Vy =Vyy+Vyp+Vyp, OF
vy =8.089[V]-4.004[V]+8.474| V] =12.559| V].

Re=2.2[kQ] v = 4.7[kQ]ix

O

+ VX
: Ix Ip=
Vi R, 5.6[kQ]
« 2.7[mA
-/ 12V] 3.9[kQ)] Y [mA]
Y
¥

()
N

r=32[V]
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Maximum Power Transfer




Maximum Power Transfer

Imagine a situation where the goal is to determine what load to attach
to a source, so that as much power as possible can be extracted from that
source. As just one practical example, imagine that you had an audlo
source in your vehicle. You wanted to get as much sound as ut
of that audio source, so that you could play your music as loud as possible.

We could think of this with the following circuit assumptions. Assume
that your audio source can be modeled with a Thevenin equivalent.
Assume that this Thevenin equivalent has a positive value for the Thevenin
equivalent resistance. Thus, R, is positive. Assume that your load, in this
case, your speaker, could be modeled by a resistor, which means that R, is
positive. The question would then translate to this: How can you pick the
load resistor value (R;) to get as much power as possible out of the audio
source?




Maximum Power Transfer — Guess 1

How can you pick the load resistor value (R,) to get as much power as
possible out of the audio source?

Guess #1. Let us imagine that we decided to get maximum power
absorbed by the load, (R;), by maximizing the current through the load.
We could maximize the current, i,, by picking R, = 0. Let us consider what

would happen.

455




Maximum Power Transfer — Guess 1

How can you pick the load resistor value (R,) to get as much power as
possible out of the audio source?

With R, = 0, we would have the following. The equation for v, would be

--------
-------
- -

ammmEE R e,

-
“‘---10-'.'.- --------

Clearly, that was not the correct guess. Let
us try again.
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Maximum Power Transfer — Guess 2

How can you pick the load resistor value (R,) to get as much power as
possible out of the audio source?

Guess #2. Let us imagine that we decided to get maximum power
absorbed by the load, (R, ), by maximizing the voltage across the load.
We could maximize the voltage, v,, by picking R, = «. Let us consider what
would happen.
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Maximum Power Transfer — Guess 2

How can you pick the load resistor value (R,) to get as much power as
possible out of the audio source?

With R, = «, we would have the following. The equation for i, would be

--------
-------
- -

-
‘-‘---ﬂ'.".'.- --------

Clearly, that was not the correct guess,
either. Let us try again.
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Maximum Power Transfer —
Maxima and Minima Problem

-

It is probably obvious to you that this is a problem we
should approach with the techniques we learned in calculus
to determine the maxima and minima of a function. We begin
by setting up the formula for the power absorbed by the load.
W EVE

p =V, =V R v or
aps.py.Ry =Vl Vo | p g R LR )
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Maximum Power Transfer —
Maxima and Minima Problem

Next, we differentiate the power expression, with r
to R,. We get

d(pABS.BY.RL ) ~ (v, )2 ((RL + R,y )2 —-R,2(R, +RTH)).

dR; (R, + Ry )4

After that, we set this derivative equal to zero and solve,

to get

Then, we examine the second
derivative, and find out it is negative,
so this is a local maximum.
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Maximum Power Transfer —
Maxima and Minima Problem

So, we have

Ry = Ry

as a local maximum. To complete the process, we examine
the end points of the possible range of values, which we
actually already did with our Guess 1 and Guess 2. Those
end points, where R, = 0 and R, = oo, were both zero values
for power, so they were not the maximum value.

Finally, we look for discontinuities in the
function, but there are none for positive
values of R, and R,

This value i1s our maximum value.
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Notes

1. We found that the maximum power is extracted from the !e,

when the load resistance is equal to the Thevenin resistance of the

source.
2. So the answer is that we should pick the resistance of the speaker in
our vehicle to be equal to the Thevenin resistance of our audio source, to

get the maximum power out of that audio source.

3. However, this conclusion is generally valid, and therefore significantly
valuable. We call the rule stated in note 1 as the Maximum Power Transfer

rule.




Example Problem

We wish to find the maximum power that can
be delivered to the load resistor, R;, in the

circuit below.

We will find the Thevenin equivalent as seen by the load
resistor, R;, and use it to get the solution. We begin by naming the
terminals of the resistor R, in the diagram, as A and B.




Example Problem — Step 1

We begin by finding the open-circuit voltage with
the polarity defined in the circuit given below.

We remove R,, since we are finding the Thevenin
equivalent with respect to it.
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Example Problem — Step 2

We find the voltage v,,.. Writing VDR as

(10+27)[Q]
10+27+27)[Q]
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Note that the
voltage source
becomes a short
circuit, and the

current source
becomes an open
circuit. These
represent zero-
valued sources.

Example Problem — Step 3

Next, we will find the equivalent
resistance seen by the load r%
We will call this equivalent resistan

. The first step in this solution is to

set the independent sources equal to
zero. We get this circuit, shown below.




Example Problem — Step 4

To find the equivalent resistance, , we simply combine
resistances in parallel and in series. We have

R, =(R,+R,)|| R, =37[Q]|| 27[Q]. Solving, we get
R,, =15.6[2].




Example Problem — Step &

To complete this problem, we would redraw the circuit,
showing the complete Thevenin’s equivalent, conn
the load. Also, to get maximum power transfer, we make the

load equal to the Thevenin resistance of the source. This has
been done here.

Vo=

31.22[V|
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Example Problem — Step 6

Finally, we calculate the power absorbed by the
load. Because the resistances are equal, the voltage
across the load is half that of the source. We hav

P 4BS.BY.R
L L
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Inductors and Capacitors



Circuit Elements

* |n circuits, we think about basic circuit
elements that are the basic “building
blocks” of our circuits. This is similar to
what we do in Chemistry with chemical
elements like oxygen or nitrogen.

* A circuit element cannot be broken
down or subdivided into other circuit
elements.

« A circuit element can be defined in
terms of the behavior of the voltage
and current at its terminals.
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The 5 Basic Circuit Elements

-

There are 5 basic circuit elements:
1. Voltage sources
2. Current sources
3. Resistors

4. Inductors

5. Capacitors

We defined the first three elements previously.
We will now introduce inductors or
capacitors.
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Presenter Notes
Presentation Notes
The first three elements were introduced in Part 3 of Module 1.


Inductors

* An inductor is a two-terminal
circuit element that has a voltage
across its terminals which is
proportional to the derivative of
the current through its terminals.

 The coefficient of this
proportionality is the defining
characteristic of an inductor.

-
L
A
8

* An inductor is the device that we | W :

use to model the effect of —
magnetic fields on circuit In many cases a coll of
variables. The energy stored in iz (G2l be modeled as
magnetic fields has effects on an inductor.

voltage and current. We use the

iInductor component to model

these effects.
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Inductors — Definition and Units

* An inductor obeys the expression

where v, is the voltage across the
inductor, and i, is the current through
the inductor, and L, is called the
inductance.

« |In addition, it works both ways. If
something obeys this expression, we

can think of it, and model it, as an There is an inductance whenever
inductor. we have magnetic fields produced,
: : and there are magnetic fields
 The unit ([Henry] or [H]) IS whenever current flows. However,

aP=TaglcTo R (ol g IerT=Tola M [STalaYAR-1a[e WIS this inductance is often negligible

equa| to a [Volt-second/Ampere]_ except when we wind wires in coils
Bl to concentrate the effects.
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Schematic Symbol for Inductors

The schematic symbol that we use for -
inductors is shown here.

di,

v, =L,—

*dt
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Inductor Polarities

Previously, we have
emphasized the important of
reference polarities of current
sources and voltages sources.
There is no corresponding
polarity to an inductor. You
can flip it end-for-end, and it
will behave the same way.

However, similar to a resistor,
direction matters in one sense;
we need to have defined the
voltage and current in the
passive sign relationship to
use the defining equation the
way we have it here.
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Presenter Notes
Presentation Notes
{I need a link here to the passive sign convention discussion in DPKC_Mod01_Part02.}


Passive and Active
Sign Relationship for Inductors

The sign of the equation that we use for in%
depends on whether we have used the pas

sign relationship or the active sign relationship.




Defining Equation, Integral
Form, Derivation

The defining equation for the inductor, -

can be rewritten in another way. If we want to express the
current in terms of the voltage, we can integrate both sides.

We pick ¢, and t for limits of the integral, where ¢ is time, and ¢, is an arbitrary
time value, often zero. The inductance, L,, is constant, and can be taken
out of the integral. To avoid confusion, we introduce the dummy variable s
in the integral. We get

: We finish the derivation in
shahriar the next slide. 479




Defining Equations for
Inductors

L v, (s)ds —j di, .

-

t
L, *%

We can take this equation and perform the integral on the right hand side.
When we do this we get :

Z X VL(S)dS_lL(t)_ZL(t ).

Thus, we can solve for i, (), and we have two defining equations for the
inductor,

. 1 .
W(0=7 J, vio)ds+i, (1),

Remember that both of these are defined for the passive sign relationship
for i, and v,. If not, then wenaeed snaregrative sign in these equatioests.



Defining Equations for
Inductors, Active and Passive

For the passive sign relationship for i, and v;. —

. I .
(0= -] s i) K

For the active sign relationship for i, and v;.

4
v (s)ds +i, (1), I
4

0
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The implications of these equations are significantzskei»
example, if the current is not changing, then the voltage will be
zero. This current could be a constant value, and large, and
an inductor will have no voltage across it. This is counter-
intuitive for many students. That is because they are thinking
of actual coils, which have some finite resistance in their wires.
For us, an ideal inductor has no resistance; it simply obeys the
laws below.

We might model a coil with both an inductor and a resistor,
but for now, all we need to note is what happens with these
ideal elements.

(0= [ vi6ds +i, 1),




Step Change

Ask the Step Change
question.

. I .
0= v +ie). g



The implications of these equations are significant=——
Another implication is that we cannot change the current
through an inductor instantaneously. If we were to make such
a change, the derivative of current with respect to time would
be infinity, and the voltage would have to be infinite. Since it is
not possible to have an infinite voltage, it must be impossible
to change the current through an inductor instantaneously.

(0= [ vi6ds +i, 1),




Energy in Inductors, Derivation

We can take the defining equation for the inductor, and use it to
solve for the energy stored in the magnetic field associ
with the inductor. First, we note that the power Is vo

times current, as it has always been. So, we can write,

Now, we can multiply each side by dt, and integrate both sides to get

Note, that when we integrated, we needed limits. We know that when the
current is zero, there is no magnetic field, and therefore there can be no
energy in the magnetic field. That allowed us to use 0 for the lower limits.
The upper limits came since we WI|| have the energy stored, w,, for az%ig/en

hahria
value of current, /,. The derivation continues on the next slide.



Energy in Inductors, Formula
We had the integral for the energy,

Now, we perform the integration. Note that L, is a constant, independent of
the current through the inductor, so we can take it out of the integral. We
W EVE
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Go bagk to
Notes
1. We took some mathematical liberties in this derivation. For example,

we do not really multiply both sides by dft, but the results that we obtain are
correct here.

2. Note that the energy is a function of the current squared, whichawillibe
positive. We will assume that our inductance is also positive, and clearly 2
IS positive. So, the energy stored in the magnetic field of an inductor will be
positive.

3. These three equations are useful, and should be learned or written
down.

. | .
(=7 J, vi(s)ds+i, Gz

TR g -
% s
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Capacitors

* A capacitor is a two-terminal
circuit element that has a current
through its terminals which is
proportional to the derivative of
the voltage across its terminals.

* The coefficient of this
proportionality is the defining
characteristic of a capacitor.

* A capacitor is the device that we
use to model the effect of electric
fields on circuit variables. The . lel conducti
energy stored in electric fields WO paralicl CONTUCLIVE
has effects on voltage and plates 1s used when we
current. We use the capacitor think of a capacitor, since

component to model these this arrangement facilitates
effects. the production of an

Noor Md Shahriar electric field.

In many cases the 1dea of




Capacitors — Definition and Units

« A capacitor obeys the expression

where v, is the voltage across the
capacitor, and i is the current through
the capacitor, and C, is called the
capacitance.

« |In addition, it works both ways. If
something obeys this expression, we
can think of it, and model it, as an

capacitor. There is a capacitance whenever

« The unit ([Farad] or [F]) is named for we have electric fields produced,
Michael Faraday, and is equal to a and there are electric fields
[Ampere-second/Volt]. Since an whenever there is a voltage
[Ampere] is a [Coulomb/second], we between conductors. However, this
can also say that a [F] = [C/V]. capacitance is often negligible.
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Schematic Symbol for Capacitors

The schematic symbol that we use for -
capacitors is shown here.
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Passive and Active
Sign Relationship for Capacitors
The sign of the equation that we use for c |

depends on whether we have used the pa!ve
sign relationship or the active sign relationship.




Defining Equation, Integral
Form, Derivation

The defining equation for the capacitor, -

can be rewritten in another way. If we want to express the
voltage in terms of the current, we can integrate both sides.

We pick t, and t for limits of the integral, where t is time, and ¢, is an
arbitrary time value, often zero. The capacitance, C,, is constant,
and can be taken out of the integral. To avoid confusion, we
introduce the dummy variable s in the integral. We get

We finish the derivation in
shahriar the next slide. 493




Defining Equations for
Capacitors

We can take this equation and perform the integral on the right hand side.

When we do this we get
t
ic(8)ds = v (1) =ve(Z)-

)

Thus, we can solve for v(t), and we have two defining equations for the
capacitor,

|
ve(t) = o= (s v (). MR

Remember that both of these are defined for the passive sign relationship
for i, and v.. If not, then weiderdsaanegative sign in these equatinas.



Defining Equations for
Capacitors

If we have the passive sign relationship for i and v then we have

If we have the active sign relationship for i. and v then we have negative
signs in these equations.
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The implications of these equations are significant=sFom
example, if the voltage is not changing, then the current will be
zero. This voltage could be a constant value, and large, and a
capacitor will have no current through it.

For many students this is easier to accept than the
analogous case with the inductor. This is because practical
capacitors have a large enough resistance of the dielectric
material between the capacitor plates, so that the current flow
through it is generally negligible.

e (0) = [ ic(s)ds 41,



Some students are troubled by the introduction*
dummy variable s in the integral form of this equation, below.
It is not really necessary to introduce a dummy variable. It

really doesn’t matter what variable is integrated over, because
when the limits are inserted, that variable goes away.

e (0) = [ ie()ds + v @)
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Energy in Capacitors,

N | Derivation
We can take the defining equation for the capacitor, and use it

to solve for the energy stored in the electric field %d
with the capacitor. First, we note that the power is v

times current, as it has always been. So, we can write,

Now, we can multiply each side by d¢, and integrate both sides to get

Note, that when we integrated, we needed limits. We know that when the
voltage is zero, there is no electric field, and therefore there can be no
energy in the electric field. That allowed us to use 0 for the lower limits.
The upper limits came since we will have the energy stored, w, for azgiglen

. oor Md Shahriar :
value of voltage, v.. The derivation Continues on the next slide.



Energy in Capacitors, Formula
We had the integral for the energy,

Now, we perform the integration. Note that C, is a constant, independent of
the voltage across the capacitor, so we can take it out of the integral. We
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Go back to
Overview

Notes "

1. We took some mathematical liberties in this derivation. For example,
we do not really multiply both sides by dft, but the results that we obtain are
correct here.

2. Note that the energy is a function of the voltage squared, v%e
positive. We will assume that our capacitance is also positive, and clearly
Y2 is positive. So, the energy stored in the electric field of an capacitor will
be positive.

3. These three equations are useful, and should be learned or written
down.




Series Inductors Equivalent Circuits

Two series
inductors, L, and
L,, can be Rest of
replaced with an .the.
equivalent circuit Circuit

with a single
inductor L, as
long as

Ly =L+ L,
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More than 2 Series Inductors

This rule can
be extended to
more than two
series inductors.
In this case, for
N series
iInductors, we
have

Rest of
the
Circuit
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Series Inductors Equivalent
Circuits: A Reminder

Two series
inductors, L, and L,,
can be replaced with
an equivalent circuit
with a single inductor
Ly, as long as

Lo =1,

Rest of

Noor Md Shahriar

the

Circuit

Rest of

the
Circuit




Series Inductors Equivalent
o, 2, an Circuits: Initial Conditions

inductors, L, and L,,
can be replaced with
an equivalent circuit
with a single inductor
Lgy, as long as

Lyg=L+L. Rest of
LI the

Circuit

j Rest of
the

Circuit




Parallel Inductors Equivalent Circuits

Two parallel
inductors, L,
and L,, can be
replaced with an
equivalent
circuit with a
single inductor
Ly, as long as

Rest of
the

Circuit Chienit




This rule
can be
extended to
more than two
parallel

Inductors. In
this case, for N
parallel
iInductors, we
have

More than 2 Parallel Inductors

J Rest of
the
Circuit

Rest of
the
Circuit




Parallel Inductors Equivalent
Two parallel Circuits: A Reminder

inductors, L, and
L,, can be
replaced with an )
J Rest of

equivalent circuit
with a single

the
iInductor LEQ’ as iLJ(t)\ i,,(t) \ Circuit
L

Circuit
long as

2




 To be

Parallel Inductors Equivalent
Circuits: Initial Conditions

equivalent with
respect to the
“rest of the . e
circuit”, we St
must have any
Initial condition
be the same as
well. Thatis,

iLEQ (to) — iLl(tO) +1;, (to)- .
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Parallel Capacitors

Equivalent Circuits

Two parallel capacitors, C, and C,, can b
replaced with an equivalent circuit with a single
capacitor Cg,, as long as

Rest of Rest of
the the

Circuit oot

Cro



More than 2 Parallel Capacitors

This rule can be extended to more
than two parallel capacitors. In this case, -
for N parallel capacitors, we have

Rest of Rest of
the the

Circuit oot
C

EQ




Parallel Capacitors Equivalent

Circuits: A Reminder

This rule can be extended to more
than two parallel capacitors. In this case, a3
for N parallel capacitors, we have

Cpp=C+C,+...+Cy.

Rest of
the
Circuit

Rest of
the
Circuit




Two parallel

capacitors, C; and C,,

can be replaced with
an equivalent circuit
with a single inductor
Cro, as long as

Parallel Capacitors Equivalent
Circuits: Initial Conditions

Rest of

the
Circuit

Circuit




Two series
capacitors, C,
and C,, can be
replaced with an
equivalent
circuit with a
single inductor
Crp, @s long as

Series Capacitors
Equivalent Circuits

Rest of
the
Circuit

Rest of
the
Circuit




More than 2 Series Capacitors

This rule can be c, = Re;t of Rest of

extended to more C.t ¢ the
1rcuit

than two series
capacitors. In this
case, for N series
capacitors, we
have

Circuit




Two series capacitors,
C, and C,, can be replaced
with an equivalent circuit
with a single capacitor Cy,,
as long as

Series Capacitors Equivalent
Circuits: A Reminder

Rest of
the
Circuit

Circuit




Series Capacitors Equivalent
Circuits: Initial Conditions

 To be
equivalent with Rest of
respect to the the
“rest of the Circuit
circuit’, we
must have any
Initial condition
be the same as
well. Thatis,

Rest of
the
Circuit

Vceo (%) = Ve (&) + Ve, (&)
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Inductor Rules and Equations

* For inductors,
we have the
following rules
and equations
which hold:

di (1)
dt

21 (f) = Li [ v (9)ds+1,(2,)

3iw (1) = (%)LX (Z.L(t))2

4: No instantaneous change in current through the inductor.

l:v,(t)=L,

5: When there 1s no change in the current, there 1s no voltage.

6: Appears as a short-circuit at Gc.



Inductor Rules and Equations

— dc Note
For
iInductors, we
have the L e #[H] *

following :
rules and The phrase dc may

equations be new to some
which hold: [l students. By “dc’,
7 we mean that
1:v,(t)=L, AQ nothing is
dt changing. It came

from the phrase
“direct current”, but
IS now used in
3:w, (1) = (%)LX (i, () many additional
situations, where
things are constant.
It is used with more
6: Appears as a short-circuit at dc. than just cuirent.

2:0,(1) = LL [ vo()ds+i, (z,)

X

4: No instantaneous change in current through the inductor.

5: When there 1s no change in the current, there 1s no voltage.




Capacitor Rules and
Equations

« For capacitors,
we have the
following rules
and equations
which hold:

dv.(t)
dt

2:ve () = Ci [ i (s)ds +ve(t,)

3:we () =( 15)Cx (ve )

4: No 1nstantaneous change in voltage across the capacitor.

l:i.(t)=C,

5: When there 1s no change in the voltage, there is no current.

6: Appears as a open-circuit at de.



Example Problem #1

1. The circuit shown below has a switch which closed at
t = 0. The voltages v, and v, were measured before the
switch was closed, and it was found that

v,(¢) =15 V], fort <0, and v,(¢#) =-7[ V], for ¢ <O0.

_|_
V

2 C.=

— 3[uF]

® -
In addition, for time greater than zero, 1t was determined
that

i, ()= (ZZQSOO[Sl]t )[mA], for ¢ > 0.
Explore the energy stored 1n the capacitors for # <0,
and for ¢ = oo.




Example Problem #2

The switch shown had been open for a long time, then
closed at r = 0, and opened again at S0[us].

a) Finc

i (0).

b) Find i,(0%).

¢) Finc

v (00).

d) Find v,.(0).

3.3[kQ]

A
Vs = =

16[kQ]ix 22[mA]




Example Problem #2

The switch shown had been open for a long time, then
closed at r = 0, and opened again at S0[us].

a) Find i, (0").
b) Find i,(0%).
¢) Find v, (0").
d) Find v,.(0%).

2) i,(0) = 336.4[pA]
b) i,(07) = -56.63[1A]

¢) v,(0) =0
d) v(0") = 2.20[V]

A
Vs = =

16[kQ]ix 22[mA]




Example Problem #3

For the circuit shown, the switch had been 1n position a for a long
time before moving to position b at = 0. The voltage v, before

t = 0 was constant, and equal to -7.34[V].

a) Find v, (0"). 15[Q]

b) Find v,(07).
¢) Find i, (0).

d) Find i,(0").

8[F]

+
Vw
1 N

6.
fir

- \J2.3[V]




Example Problem #3

For the circuit shown, the switch had been 1n position a for a long
time before moving to position b at = 0. The voltage v, before

t = 0 was constant, and equal to -7.34[V].

a) Find v, (0"). 15[Q]

b) Find v,(07).
c¢) Find i,(0).

d) Find i,(07).

8[F]

+
Vw
1 N

6.
fir

N\J2.3[V]

a) v,(0°) = -4.96[V]
b) v,(0%) = -4.96[V]
¢) i,{0) =0

d) i,(0) = 5.2[A]




Example Problem #4

In the circuit shown, the switch was closed for a
long time, before 1t was opened at = 0. Find

v, (10[ms]).

R, =22[kQ] R,=10[kQ]

v, (10[ms]) = —23.04[ V].
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